all repos — min @ ca018c34568d8abae090a61bfc43ca37e3ddc46d

A small but practical concatenative programming language.

minpkg/vendor/aes/libaes.c

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
/*

This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode.
Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.

The implementation is verified against the test vectors in:
  National Institute of Standards and Technology Special Publication 800-38A 2001 ED

ECB-AES128
----------

  plain-text:
    6bc1bee22e409f96e93d7e117393172a
    ae2d8a571e03ac9c9eb76fac45af8e51
    30c81c46a35ce411e5fbc1191a0a52ef
    f69f2445df4f9b17ad2b417be66c3710

  key:
    2b7e151628aed2a6abf7158809cf4f3c

  resulting cipher
    3ad77bb40d7a3660a89ecaf32466ef97 
    f5d3d58503b9699de785895a96fdbaaf 
    43b1cd7f598ece23881b00e3ed030688 
    7b0c785e27e8ad3f8223207104725dd4 


NOTE:   String length must be evenly divisible by 16byte (str_len % 16 == 0)
        You should pad the end of the string with zeros if this is not the case.
        For AES192/256 the key size is proportionally larger.

*/


/*****************************************************************************/
/* Includes:                                                                 */
/*****************************************************************************/
#include <stdint.h>
#include <string.h> // CBC mode, for memset
#include "aes.h"

/*****************************************************************************/
/* Defines:                                                                  */
/*****************************************************************************/
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4

#if defined(AES256) && (AES256 == 1)
    #define Nk 8
    #define Nr 14
#elif defined(AES192) && (AES192 == 1)
    #define Nk 6
    #define Nr 12
#else
    #define Nk 4        // The number of 32 bit words in a key.
    #define Nr 10       // The number of rounds in AES Cipher.
#endif

// jcallan@github points out that declaring Multiply as a function 
// reduces code size considerably with the Keil ARM compiler.
// See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3
#ifndef MULTIPLY_AS_A_FUNCTION
  #define MULTIPLY_AS_A_FUNCTION 0
#endif




/*****************************************************************************/
/* Private variables:                                                        */
/*****************************************************************************/
// state - array holding the intermediate results during decryption.
typedef uint8_t state_t[4][4];



// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
// The numbers below can be computed dynamically trading ROM for RAM - 
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
static const uint8_t sbox[256] = {
  //0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F
  0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
  0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
  0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
  0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
  0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
  0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
  0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
  0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
  0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
  0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
  0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
  0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
  0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
  0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
  0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
  0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };

static const uint8_t rsbox[256] = {
  0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
  0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
  0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
  0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
  0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
  0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
  0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
  0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
  0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
  0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
  0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
  0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
  0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
  0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
  0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
  0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };

// The round constant word array, Rcon[i], contains the values given by 
// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
static const uint8_t Rcon[11] = {
  0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };

/*
 * Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12),
 * that you can remove most of the elements in the Rcon array, because they are unused.
 *
 * From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
 * 
 * "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed), 
 *  up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
 */


/*****************************************************************************/
/* Private functions:                                                        */
/*****************************************************************************/
/*
static uint8_t getSBoxValue(uint8_t num)
{
  return sbox[num];
}
*/
#define getSBoxValue(num) (sbox[(num)])
/*
static uint8_t getSBoxInvert(uint8_t num)
{
  return rsbox[num];
}
*/
#define getSBoxInvert(num) (rsbox[(num)])

// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states. 
static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key)
{
  unsigned i, j, k;
  uint8_t tempa[4]; // Used for the column/row operations
  
  // The first round key is the key itself.
  for (i = 0; i < Nk; ++i)
  {
    RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
    RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
    RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
    RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
  }

  // All other round keys are found from the previous round keys.
  for (i = Nk; i < Nb * (Nr + 1); ++i)
  {
    {
      k = (i - 1) * 4;
      tempa[0]=RoundKey[k + 0];
      tempa[1]=RoundKey[k + 1];
      tempa[2]=RoundKey[k + 2];
      tempa[3]=RoundKey[k + 3];

    }

    if (i % Nk == 0)
    {
      // This function shifts the 4 bytes in a word to the left once.
      // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]

      // Function RotWord()
      {
        k = tempa[0];
        tempa[0] = tempa[1];
        tempa[1] = tempa[2];
        tempa[2] = tempa[3];
        tempa[3] = k;
      }

      // SubWord() is a function that takes a four-byte input word and 
      // applies the S-box to each of the four bytes to produce an output word.

      // Function Subword()
      {
        tempa[0] = getSBoxValue(tempa[0]);
        tempa[1] = getSBoxValue(tempa[1]);
        tempa[2] = getSBoxValue(tempa[2]);
        tempa[3] = getSBoxValue(tempa[3]);
      }

      tempa[0] = tempa[0] ^ Rcon[i/Nk];
    }
#if defined(AES256) && (AES256 == 1)
    if (i % Nk == 4)
    {
      // Function Subword()
      {
        tempa[0] = getSBoxValue(tempa[0]);
        tempa[1] = getSBoxValue(tempa[1]);
        tempa[2] = getSBoxValue(tempa[2]);
        tempa[3] = getSBoxValue(tempa[3]);
      }
    }
#endif
    j = i * 4; k=(i - Nk) * 4;
    RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];
    RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];
    RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];
    RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];
  }
}

void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key)
{
  KeyExpansion(ctx->RoundKey, key);
}
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv)
{
  KeyExpansion(ctx->RoundKey, key);
  memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv)
{
  memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
#endif

// This function adds the round key to state.
// The round key is added to the state by an XOR function.
static void AddRoundKey(uint8_t round,state_t* state,uint8_t* RoundKey)
{
  uint8_t i,j;
  for (i = 0; i < 4; ++i)
  {
    for (j = 0; j < 4; ++j)
    {
      (*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
    }
  }
}

// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void SubBytes(state_t* state)
{
  uint8_t i, j;
  for (i = 0; i < 4; ++i)
  {
    for (j = 0; j < 4; ++j)
    {
      (*state)[j][i] = getSBoxValue((*state)[j][i]);
    }
  }
}

// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void ShiftRows(state_t* state)
{
  uint8_t temp;

  // Rotate first row 1 columns to left  
  temp           = (*state)[0][1];
  (*state)[0][1] = (*state)[1][1];
  (*state)[1][1] = (*state)[2][1];
  (*state)[2][1] = (*state)[3][1];
  (*state)[3][1] = temp;

  // Rotate second row 2 columns to left  
  temp           = (*state)[0][2];
  (*state)[0][2] = (*state)[2][2];
  (*state)[2][2] = temp;

  temp           = (*state)[1][2];
  (*state)[1][2] = (*state)[3][2];
  (*state)[3][2] = temp;

  // Rotate third row 3 columns to left
  temp           = (*state)[0][3];
  (*state)[0][3] = (*state)[3][3];
  (*state)[3][3] = (*state)[2][3];
  (*state)[2][3] = (*state)[1][3];
  (*state)[1][3] = temp;
}

static uint8_t xtime(uint8_t x)
{
  return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}

// MixColumns function mixes the columns of the state matrix
static void MixColumns(state_t* state)
{
  uint8_t i;
  uint8_t Tmp, Tm, t;
  for (i = 0; i < 4; ++i)
  {  
    t   = (*state)[i][0];
    Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
    Tm  = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm);  (*state)[i][0] ^= Tm ^ Tmp ;
    Tm  = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm);  (*state)[i][1] ^= Tm ^ Tmp ;
    Tm  = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm);  (*state)[i][2] ^= Tm ^ Tmp ;
    Tm  = (*state)[i][3] ^ t ;              Tm = xtime(Tm);  (*state)[i][3] ^= Tm ^ Tmp ;
  }
}

// Multiply is used to multiply numbers in the field GF(2^8)
#if MULTIPLY_AS_A_FUNCTION
static uint8_t Multiply(uint8_t x, uint8_t y)
{
  return (((y & 1) * x) ^
       ((y>>1 & 1) * xtime(x)) ^
       ((y>>2 & 1) * xtime(xtime(x))) ^
       ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
       ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))));
  }
#else
#define Multiply(x, y)                                \
      (  ((y & 1) * x) ^                              \
      ((y>>1 & 1) * xtime(x)) ^                       \
      ((y>>2 & 1) * xtime(xtime(x))) ^                \
      ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^         \
      ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))))   \

#endif

// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
static void InvMixColumns(state_t* state)
{
  int i;
  uint8_t a, b, c, d;
  for (i = 0; i < 4; ++i)
  { 
    a = (*state)[i][0];
    b = (*state)[i][1];
    c = (*state)[i][2];
    d = (*state)[i][3];

    (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
    (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
    (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
    (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
  }
}


// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void InvSubBytes(state_t* state)
{
  uint8_t i, j;
  for (i = 0; i < 4; ++i)
  {
    for (j = 0; j < 4; ++j)
    {
      (*state)[j][i] = getSBoxInvert((*state)[j][i]);
    }
  }
}

static void InvShiftRows(state_t* state)
{
  uint8_t temp;

  // Rotate first row 1 columns to right  
  temp = (*state)[3][1];
  (*state)[3][1] = (*state)[2][1];
  (*state)[2][1] = (*state)[1][1];
  (*state)[1][1] = (*state)[0][1];
  (*state)[0][1] = temp;

  // Rotate second row 2 columns to right 
  temp = (*state)[0][2];
  (*state)[0][2] = (*state)[2][2];
  (*state)[2][2] = temp;

  temp = (*state)[1][2];
  (*state)[1][2] = (*state)[3][2];
  (*state)[3][2] = temp;

  // Rotate third row 3 columns to right
  temp = (*state)[0][3];
  (*state)[0][3] = (*state)[1][3];
  (*state)[1][3] = (*state)[2][3];
  (*state)[2][3] = (*state)[3][3];
  (*state)[3][3] = temp;
}


// Cipher is the main function that encrypts the PlainText.
static void Cipher(state_t* state, uint8_t* RoundKey)
{
  uint8_t round = 0;

  // Add the First round key to the state before starting the rounds.
  AddRoundKey(0, state, RoundKey); 
  
  // There will be Nr rounds.
  // The first Nr-1 rounds are identical.
  // These Nr-1 rounds are executed in the loop below.
  for (round = 1; round < Nr; ++round)
  {
    SubBytes(state);
    ShiftRows(state);
    MixColumns(state);
    AddRoundKey(round, state, RoundKey);
  }
  
  // The last round is given below.
  // The MixColumns function is not here in the last round.
  SubBytes(state);
  ShiftRows(state);
  AddRoundKey(Nr, state, RoundKey);
}

static void InvCipher(state_t* state,uint8_t* RoundKey)
{
  uint8_t round = 0;

  // Add the First round key to the state before starting the rounds.
  AddRoundKey(Nr, state, RoundKey); 

  // There will be Nr rounds.
  // The first Nr-1 rounds are identical.
  // These Nr-1 rounds are executed in the loop below.
  for (round = (Nr - 1); round > 0; --round)
  {
    InvShiftRows(state);
    InvSubBytes(state);
    AddRoundKey(round, state, RoundKey);
    InvMixColumns(state);
  }
  
  // The last round is given below.
  // The MixColumns function is not here in the last round.
  InvShiftRows(state);
  InvSubBytes(state);
  AddRoundKey(0, state, RoundKey);
}


/*****************************************************************************/
/* Public functions:                                                         */
/*****************************************************************************/
#if defined(ECB) && (ECB == 1)


void AES_ECB_encrypt(struct AES_ctx *ctx,const uint8_t* buf)
{
  // The next function call encrypts the PlainText with the Key using AES algorithm.
  Cipher((state_t*)buf, ctx->RoundKey);
}

void AES_ECB_decrypt(struct AES_ctx* ctx,const uint8_t* buf)
{
  // The next function call decrypts the PlainText with the Key using AES algorithm.
  InvCipher((state_t*)buf, ctx->RoundKey);
}


#endif // #if defined(ECB) && (ECB == 1)





#if defined(CBC) && (CBC == 1)


static void XorWithIv(uint8_t* buf, uint8_t* Iv)
{
  uint8_t i;
  for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size
  {
    buf[i] ^= Iv[i];
  }
}

void AES_CBC_encrypt_buffer(struct AES_ctx *ctx,uint8_t* buf, uint32_t length)
{
  uintptr_t i;
  uint8_t *Iv = ctx->Iv;
  for (i = 0; i < length; i += AES_BLOCKLEN)
  {
    XorWithIv(buf, Iv);
    Cipher((state_t*)buf, ctx->RoundKey);
    Iv = buf;
    buf += AES_BLOCKLEN;
    //printf("Step %d - %d", i/16, i);
  }
  /* store Iv in ctx for next call */
  memcpy(ctx->Iv, Iv, AES_BLOCKLEN);
}

void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf,  uint32_t length)
{
  uintptr_t i;
  uint8_t storeNextIv[AES_BLOCKLEN];
  for (i = 0; i < length; i += AES_BLOCKLEN)
  {
    memcpy(storeNextIv, buf, AES_BLOCKLEN);
    InvCipher((state_t*)buf, ctx->RoundKey);
    XorWithIv(buf, ctx->Iv);
    memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN);
    buf += AES_BLOCKLEN;
  }

}

#endif // #if defined(CBC) && (CBC == 1)



#if defined(CTR) && (CTR == 1)

/* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length)
{
  uint8_t buffer[AES_BLOCKLEN];
  
  unsigned i;
  int bi;
  for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi)
  {
    if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */
    {
      
      memcpy(buffer, ctx->Iv, AES_BLOCKLEN);
      Cipher((state_t*)buffer,ctx->RoundKey);

      /* Increment Iv and handle overflow */
      for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi)
      {
	/* inc will owerflow */
        if (ctx->Iv[bi] == 255)
	{
          ctx->Iv[bi] = 0;
          continue;
        } 
        ctx->Iv[bi] += 1;
        break;   
      }
      bi = 0;
    }

    buf[i] = (buf[i] ^ buffer[bi]);
  }
}

#endif // #if defined(CTR) && (CTR == 1)