all repos — min @ 2f8da2778f017ab8db051fca7d75866b9042c494

A small but practical concatenative programming language.

vendor/libminiz.c

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
/* miniz.c v1.15 - public domain deflate/inflate, zlib-subset, ZIP reading/writing/appending, PNG writing
   See "unlicense" statement at the end of this file.
   Rich Geldreich <richgel99@gmail.com>, last updated Oct. 13, 2013
   Implements RFC 1950: http://www.ietf.org/rfc/rfc1950.txt and RFC 1951: http://www.ietf.org/rfc/rfc1951.txt

   Most API's defined in miniz.c are optional. For example, to disable the archive related functions just define
   MINIZ_NO_ARCHIVE_APIS, or to get rid of all stdio usage define MINIZ_NO_STDIO (see the list below for more macros).

   * Change History
     10/13/13 v1.15 r4 - Interim bugfix release while I work on the next major release with Zip64 support (almost there!):
       - Critical fix for the MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY bug (thanks kahmyong.moon@hp.com) which could cause locate files to not find files. This bug
        would only have occured in earlier versions if you explicitly used this flag, OR if you used mz_zip_extract_archive_file_to_heap() or mz_zip_add_mem_to_archive_file_in_place()
        (which used this flag). If you can't switch to v1.15 but want to fix this bug, just remove the uses of this flag from both helper funcs (and of course don't use the flag).
       - Bugfix in mz_zip_reader_extract_to_mem_no_alloc() from kymoon when pUser_read_buf is not NULL and compressed size is > uncompressed size
       - Fixing mz_zip_reader_extract_*() funcs so they don't try to extract compressed data from directory entries, to account for weird zipfiles which contain zero-size compressed data on dir entries.
         Hopefully this fix won't cause any issues on weird zip archives, because it assumes the low 16-bits of zip external attributes are DOS attributes (which I believe they always are in practice).
       - Fixing mz_zip_reader_is_file_a_directory() so it doesn't check the internal attributes, just the filename and external attributes
       - mz_zip_reader_init_file() - missing MZ_FCLOSE() call if the seek failed
       - Added cmake support for Linux builds which builds all the examples, tested with clang v3.3 and gcc v4.6.
       - Clang fix for tdefl_write_image_to_png_file_in_memory() from toffaletti
       - Merged MZ_FORCEINLINE fix from hdeanclark
       - Fix <time.h> include before config #ifdef, thanks emil.brink
       - Added tdefl_write_image_to_png_file_in_memory_ex(): supports Y flipping (super useful for OpenGL apps), and explicit control over the compression level (so you can
        set it to 1 for real-time compression).
       - Merged in some compiler fixes from paulharris's github repro.
       - Retested this build under Windows (VS 2010, including static analysis), tcc  0.9.26, gcc v4.6 and clang v3.3.
       - Added example6.c, which dumps an image of the mandelbrot set to a PNG file.
       - Modified example2 to help test the MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY flag more.
       - In r3: Bugfix to mz_zip_writer_add_file() found during merge: Fix possible src file fclose() leak if alignment bytes+local header file write faiiled
		 - In r4: Minor bugfix to mz_zip_writer_add_from_zip_reader(): Was pushing the wrong central dir header offset, appears harmless in this release, but it became a problem in the zip64 branch
     5/20/12 v1.14 - MinGW32/64 GCC 4.6.1 compiler fixes: added MZ_FORCEINLINE, #include <time.h> (thanks fermtect).
     5/19/12 v1.13 - From jason@cornsyrup.org and kelwert@mtu.edu - Fix mz_crc32() so it doesn't compute the wrong CRC-32's when mz_ulong is 64-bit.
       - Temporarily/locally slammed in "typedef unsigned long mz_ulong" and re-ran a randomized regression test on ~500k files.
       - Eliminated a bunch of warnings when compiling with GCC 32-bit/64.
       - Ran all examples, miniz.c, and tinfl.c through MSVC 2008's /analyze (static analysis) option and fixed all warnings (except for the silly
        "Use of the comma-operator in a tested expression.." analysis warning, which I purposely use to work around a MSVC compiler warning).
       - Created 32-bit and 64-bit Codeblocks projects/workspace. Built and tested Linux executables. The codeblocks workspace is compatible with Linux+Win32/x64.
       - Added miniz_tester solution/project, which is a useful little app derived from LZHAM's tester app that I use as part of the regression test.
       - Ran miniz.c and tinfl.c through another series of regression testing on ~500,000 files and archives.
       - Modified example5.c so it purposely disables a bunch of high-level functionality (MINIZ_NO_STDIO, etc.). (Thanks to corysama for the MINIZ_NO_STDIO bug report.)
       - Fix ftell() usage in examples so they exit with an error on files which are too large (a limitation of the examples, not miniz itself).
     4/12/12 v1.12 - More comments, added low-level example5.c, fixed a couple minor level_and_flags issues in the archive API's.
      level_and_flags can now be set to MZ_DEFAULT_COMPRESSION. Thanks to Bruce Dawson <bruced@valvesoftware.com> for the feedback/bug report.
     5/28/11 v1.11 - Added statement from unlicense.org
     5/27/11 v1.10 - Substantial compressor optimizations:
      - Level 1 is now ~4x faster than before. The L1 compressor's throughput now varies between 70-110MB/sec. on a
      - Core i7 (actual throughput varies depending on the type of data, and x64 vs. x86).
      - Improved baseline L2-L9 compression perf. Also, greatly improved compression perf. issues on some file types.
      - Refactored the compression code for better readability and maintainability.
      - Added level 10 compression level (L10 has slightly better ratio than level 9, but could have a potentially large
       drop in throughput on some files).
     5/15/11 v1.09 - Initial stable release.

   * Low-level Deflate/Inflate implementation notes:

     Compression: Use the "tdefl" API's. The compressor supports raw, static, and dynamic blocks, lazy or
     greedy parsing, match length filtering, RLE-only, and Huffman-only streams. It performs and compresses
     approximately as well as zlib.

     Decompression: Use the "tinfl" API's. The entire decompressor is implemented as a single function
     coroutine: see tinfl_decompress(). It supports decompression into a 32KB (or larger power of 2) wrapping buffer, or into a memory
     block large enough to hold the entire file.

     The low-level tdefl/tinfl API's do not make any use of dynamic memory allocation.

   * zlib-style API notes:

     miniz.c implements a fairly large subset of zlib. There's enough functionality present for it to be a drop-in
     zlib replacement in many apps:
        The z_stream struct, optional memory allocation callbacks
        deflateInit/deflateInit2/deflate/deflateReset/deflateEnd/deflateBound
        inflateInit/inflateInit2/inflate/inflateEnd
        compress, compress2, compressBound, uncompress
        CRC-32, Adler-32 - Using modern, minimal code size, CPU cache friendly routines.
        Supports raw deflate streams or standard zlib streams with adler-32 checking.

     Limitations:
      The callback API's are not implemented yet. No support for gzip headers or zlib static dictionaries.
      I've tried to closely emulate zlib's various flavors of stream flushing and return status codes, but
      there are no guarantees that miniz.c pulls this off perfectly.

   * PNG writing: See the tdefl_write_image_to_png_file_in_memory() function, originally written by
     Alex Evans. Supports 1-4 bytes/pixel images.

   * ZIP archive API notes:

     The ZIP archive API's where designed with simplicity and efficiency in mind, with just enough abstraction to
     get the job done with minimal fuss. There are simple API's to retrieve file information, read files from
     existing archives, create new archives, append new files to existing archives, or clone archive data from
     one archive to another. It supports archives located in memory or the heap, on disk (using stdio.h),
     or you can specify custom file read/write callbacks.

     - Archive reading: Just call this function to read a single file from a disk archive:

      void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename, const char *pArchive_name,
        size_t *pSize, mz_uint zip_flags);

     For more complex cases, use the "mz_zip_reader" functions. Upon opening an archive, the entire central
     directory is located and read as-is into memory, and subsequent file access only occurs when reading individual files.

     - Archives file scanning: The simple way is to use this function to scan a loaded archive for a specific file:

     int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName, const char *pComment, mz_uint flags);

     The locate operation can optionally check file comments too, which (as one example) can be used to identify
     multiple versions of the same file in an archive. This function uses a simple linear search through the central
     directory, so it's not very fast.

     Alternately, you can iterate through all the files in an archive (using mz_zip_reader_get_num_files()) and
     retrieve detailed info on each file by calling mz_zip_reader_file_stat().

     - Archive creation: Use the "mz_zip_writer" functions. The ZIP writer immediately writes compressed file data
     to disk and builds an exact image of the central directory in memory. The central directory image is written
     all at once at the end of the archive file when the archive is finalized.

     The archive writer can optionally align each file's local header and file data to any power of 2 alignment,
     which can be useful when the archive will be read from optical media. Also, the writer supports placing
     arbitrary data blobs at the very beginning of ZIP archives. Archives written using either feature are still
     readable by any ZIP tool.

     - Archive appending: The simple way to add a single file to an archive is to call this function:

      mz_bool mz_zip_add_mem_to_archive_file_in_place(const char *pZip_filename, const char *pArchive_name,
        const void *pBuf, size_t buf_size, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags);

     The archive will be created if it doesn't already exist, otherwise it'll be appended to.
     Note the appending is done in-place and is not an atomic operation, so if something goes wrong
     during the operation it's possible the archive could be left without a central directory (although the local
     file headers and file data will be fine, so the archive will be recoverable).

     For more complex archive modification scenarios:
     1. The safest way is to use a mz_zip_reader to read the existing archive, cloning only those bits you want to
     preserve into a new archive using using the mz_zip_writer_add_from_zip_reader() function (which compiles the
     compressed file data as-is). When you're done, delete the old archive and rename the newly written archive, and
     you're done. This is safe but requires a bunch of temporary disk space or heap memory.

     2. Or, you can convert an mz_zip_reader in-place to an mz_zip_writer using mz_zip_writer_init_from_reader(),
     append new files as needed, then finalize the archive which will write an updated central directory to the
     original archive. (This is basically what mz_zip_add_mem_to_archive_file_in_place() does.) There's a
     possibility that the archive's central directory could be lost with this method if anything goes wrong, though.

     - ZIP archive support limitations:
     No zip64 or spanning support. Extraction functions can only handle unencrypted, stored or deflated files.
     Requires streams capable of seeking.

   * This is a header file library, like stb_image.c. To get only a header file, either cut and paste the
     below header, or create miniz.h, #define MINIZ_HEADER_FILE_ONLY, and then include miniz.c from it.

   * Important: For best perf. be sure to customize the below macros for your target platform:
     #define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1
     #define MINIZ_LITTLE_ENDIAN 1
     #define MINIZ_HAS_64BIT_REGISTERS 1

   * On platforms using glibc, Be sure to "#define _LARGEFILE64_SOURCE 1" before including miniz.c to ensure miniz
     uses the 64-bit variants: fopen64(), stat64(), etc. Otherwise you won't be able to process large files
     (i.e. 32-bit stat() fails for me on files > 0x7FFFFFFF bytes).
*/

#ifndef MINIZ_HEADER_INCLUDED
#define MINIZ_HEADER_INCLUDED

#include <stdlib.h>

// Defines to completely disable specific portions of miniz.c:
// If all macros here are defined the only functionality remaining will be CRC-32, adler-32, tinfl, and tdefl.

// Define MINIZ_NO_STDIO to disable all usage and any functions which rely on stdio for file I/O.
//#define MINIZ_NO_STDIO

// If MINIZ_NO_TIME is specified then the ZIP archive functions will not be able to get the current time, or
// get/set file times, and the C run-time funcs that get/set times won't be called.
// The current downside is the times written to your archives will be from 1979.
//#define MINIZ_NO_TIME

// Define MINIZ_NO_ARCHIVE_APIS to disable all ZIP archive API's.
//#define MINIZ_NO_ARCHIVE_APIS

// Define MINIZ_NO_ARCHIVE_APIS to disable all writing related ZIP archive API's.
//#define MINIZ_NO_ARCHIVE_WRITING_APIS

// Define MINIZ_NO_ZLIB_APIS to remove all ZLIB-style compression/decompression API's.
//#define MINIZ_NO_ZLIB_APIS

// Define MINIZ_NO_ZLIB_COMPATIBLE_NAME to disable zlib names, to prevent conflicts against stock zlib.
//#define MINIZ_NO_ZLIB_COMPATIBLE_NAMES

// Define MINIZ_NO_MALLOC to disable all calls to malloc, free, and realloc.
// Note if MINIZ_NO_MALLOC is defined then the user must always provide custom user alloc/free/realloc
// callbacks to the zlib and archive API's, and a few stand-alone helper API's which don't provide custom user
// functions (such as tdefl_compress_mem_to_heap() and tinfl_decompress_mem_to_heap()) won't work.
//#define MINIZ_NO_MALLOC

#if defined(__TINYC__) && (defined(__linux) || defined(__linux__))
  // TODO: Work around "error: include file 'sys\utime.h' when compiling with tcc on Linux
  #define MINIZ_NO_TIME
#endif

#if !defined(MINIZ_NO_TIME) && !defined(MINIZ_NO_ARCHIVE_APIS)
  #include <time.h>
#endif

#if defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || defined(__i386) || defined(__i486__) || defined(__i486) || defined(i386) || defined(__ia64__) || defined(__x86_64__)
// MINIZ_X86_OR_X64_CPU is only used to help set the below macros.
#define MINIZ_X86_OR_X64_CPU 1
#endif

#if (__BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__) || MINIZ_X86_OR_X64_CPU
// Set MINIZ_LITTLE_ENDIAN to 1 if the processor is little endian.
#define MINIZ_LITTLE_ENDIAN 1
#endif

#if MINIZ_X86_OR_X64_CPU
// Set MINIZ_USE_UNALIGNED_LOADS_AND_STORES to 1 on CPU's that permit efficient integer loads and stores from unaligned addresses.
#define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1
#endif

#if defined(_M_X64) || defined(_WIN64) || defined(__MINGW64__) || defined(_LP64) || defined(__LP64__) || defined(__ia64__) || defined(__x86_64__)
// Set MINIZ_HAS_64BIT_REGISTERS to 1 if operations on 64-bit integers are reasonably fast (and don't involve compiler generated calls to helper functions).
#define MINIZ_HAS_64BIT_REGISTERS 1
#endif

#ifdef __cplusplus
extern "C" {
#endif

// ------------------- zlib-style API Definitions.

// For more compatibility with zlib, miniz.c uses unsigned long for some parameters/struct members. Beware: mz_ulong can be either 32 or 64-bits!
typedef unsigned long mz_ulong;

// mz_free() internally uses the MZ_FREE() macro (which by default calls free() unless you've modified the MZ_MALLOC macro) to release a block allocated from the heap.
void mz_free(void *p);

#define MZ_ADLER32_INIT (1)
// mz_adler32() returns the initial adler-32 value to use when called with ptr==NULL.
mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len);

#define MZ_CRC32_INIT (0)
// mz_crc32() returns the initial CRC-32 value to use when called with ptr==NULL.
mz_ulong mz_crc32(mz_ulong crc, const unsigned char *ptr, size_t buf_len);

// Compression strategies.
enum { MZ_DEFAULT_STRATEGY = 0, MZ_FILTERED = 1, MZ_HUFFMAN_ONLY = 2, MZ_RLE = 3, MZ_FIXED = 4 };

// Method
#define MZ_DEFLATED 8

#ifndef MINIZ_NO_ZLIB_APIS

// Heap allocation callbacks.
// Note that mz_alloc_func parameter types purpsosely differ from zlib's: items/size is size_t, not unsigned long.
typedef void *(*mz_alloc_func)(void *opaque, size_t items, size_t size);
typedef void (*mz_free_func)(void *opaque, void *address);
typedef void *(*mz_realloc_func)(void *opaque, void *address, size_t items, size_t size);

#define MZ_VERSION          "9.1.15"
#define MZ_VERNUM           0x91F0
#define MZ_VER_MAJOR        9
#define MZ_VER_MINOR        1
#define MZ_VER_REVISION     15
#define MZ_VER_SUBREVISION  0

// Flush values. For typical usage you only need MZ_NO_FLUSH and MZ_FINISH. The other values are for advanced use (refer to the zlib docs).
enum { MZ_NO_FLUSH = 0, MZ_PARTIAL_FLUSH = 1, MZ_SYNC_FLUSH = 2, MZ_FULL_FLUSH = 3, MZ_FINISH = 4, MZ_BLOCK = 5 };

// Return status codes. MZ_PARAM_ERROR is non-standard.
enum { MZ_OK = 0, MZ_STREAM_END = 1, MZ_NEED_DICT = 2, MZ_ERRNO = -1, MZ_STREAM_ERROR = -2, MZ_DATA_ERROR = -3, MZ_MEM_ERROR = -4, MZ_BUF_ERROR = -5, MZ_VERSION_ERROR = -6, MZ_PARAM_ERROR = -10000 };

// Compression levels: 0-9 are the standard zlib-style levels, 10 is best possible compression (not zlib compatible, and may be very slow), MZ_DEFAULT_COMPRESSION=MZ_DEFAULT_LEVEL.
enum { MZ_NO_COMPRESSION = 0, MZ_BEST_SPEED = 1, MZ_BEST_COMPRESSION = 9, MZ_UBER_COMPRESSION = 10, MZ_DEFAULT_LEVEL = 6, MZ_DEFAULT_COMPRESSION = -1 };

// Window bits
#define MZ_DEFAULT_WINDOW_BITS 15

struct mz_internal_state;

// Compression/decompression stream struct.
typedef struct mz_stream_s
{
  const unsigned char *next_in;     // pointer to next byte to read
  unsigned int avail_in;            // number of bytes available at next_in
  mz_ulong total_in;                // total number of bytes consumed so far

  unsigned char *next_out;          // pointer to next byte to write
  unsigned int avail_out;           // number of bytes that can be written to next_out
  mz_ulong total_out;               // total number of bytes produced so far

  char *msg;                        // error msg (unused)
  struct mz_internal_state *state;  // internal state, allocated by zalloc/zfree

  mz_alloc_func zalloc;             // optional heap allocation function (defaults to malloc)
  mz_free_func zfree;               // optional heap free function (defaults to free)
  void *opaque;                     // heap alloc function user pointer

  int data_type;                    // data_type (unused)
  mz_ulong adler;                   // adler32 of the source or uncompressed data
  mz_ulong reserved;                // not used
} mz_stream;

typedef mz_stream *mz_streamp;

// Returns the version string of miniz.c.
const char *mz_version(void);

// mz_deflateInit() initializes a compressor with default options:
// Parameters:
//  pStream must point to an initialized mz_stream struct.
//  level must be between [MZ_NO_COMPRESSION, MZ_BEST_COMPRESSION].
//  level 1 enables a specially optimized compression function that's been optimized purely for performance, not ratio.
//  (This special func. is currently only enabled when MINIZ_USE_UNALIGNED_LOADS_AND_STORES and MINIZ_LITTLE_ENDIAN are defined.)
// Return values:
//  MZ_OK on success.
//  MZ_STREAM_ERROR if the stream is bogus.
//  MZ_PARAM_ERROR if the input parameters are bogus.
//  MZ_MEM_ERROR on out of memory.
int mz_deflateInit(mz_streamp pStream, int level);

// mz_deflateInit2() is like mz_deflate(), except with more control:
// Additional parameters:
//   method must be MZ_DEFLATED
//   window_bits must be MZ_DEFAULT_WINDOW_BITS (to wrap the deflate stream with zlib header/adler-32 footer) or -MZ_DEFAULT_WINDOW_BITS (raw deflate/no header or footer)
//   mem_level must be between [1, 9] (it's checked but ignored by miniz.c)
int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits, int mem_level, int strategy);

// Quickly resets a compressor without having to reallocate anything. Same as calling mz_deflateEnd() followed by mz_deflateInit()/mz_deflateInit2().
int mz_deflateReset(mz_streamp pStream);

// mz_deflate() compresses the input to output, consuming as much of the input and producing as much output as possible.
// Parameters:
//   pStream is the stream to read from and write to. You must initialize/update the next_in, avail_in, next_out, and avail_out members.
//   flush may be MZ_NO_FLUSH, MZ_PARTIAL_FLUSH/MZ_SYNC_FLUSH, MZ_FULL_FLUSH, or MZ_FINISH.
// Return values:
//   MZ_OK on success (when flushing, or if more input is needed but not available, and/or there's more output to be written but the output buffer is full).
//   MZ_STREAM_END if all input has been consumed and all output bytes have been written. Don't call mz_deflate() on the stream anymore.
//   MZ_STREAM_ERROR if the stream is bogus.
//   MZ_PARAM_ERROR if one of the parameters is invalid.
//   MZ_BUF_ERROR if no forward progress is possible because the input and/or output buffers are empty. (Fill up the input buffer or free up some output space and try again.)
int mz_deflate(mz_streamp pStream, int flush);

// mz_deflateEnd() deinitializes a compressor:
// Return values:
//  MZ_OK on success.
//  MZ_STREAM_ERROR if the stream is bogus.
int mz_deflateEnd(mz_streamp pStream);

// mz_deflateBound() returns a (very) conservative upper bound on the amount of data that could be generated by deflate(), assuming flush is set to only MZ_NO_FLUSH or MZ_FINISH.
mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len);

// Single-call compression functions mz_compress() and mz_compress2():
// Returns MZ_OK on success, or one of the error codes from mz_deflate() on failure.
int mz_compress(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len);
int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len, int level);

// mz_compressBound() returns a (very) conservative upper bound on the amount of data that could be generated by calling mz_compress().
mz_ulong mz_compressBound(mz_ulong source_len);

// Initializes a decompressor.
int mz_inflateInit(mz_streamp pStream);

// mz_inflateInit2() is like mz_inflateInit() with an additional option that controls the window size and whether or not the stream has been wrapped with a zlib header/footer:
// window_bits must be MZ_DEFAULT_WINDOW_BITS (to parse zlib header/footer) or -MZ_DEFAULT_WINDOW_BITS (raw deflate).
int mz_inflateInit2(mz_streamp pStream, int window_bits);

// Decompresses the input stream to the output, consuming only as much of the input as needed, and writing as much to the output as possible.
// Parameters:
//   pStream is the stream to read from and write to. You must initialize/update the next_in, avail_in, next_out, and avail_out members.
//   flush may be MZ_NO_FLUSH, MZ_SYNC_FLUSH, or MZ_FINISH.
//   On the first call, if flush is MZ_FINISH it's assumed the input and output buffers are both sized large enough to decompress the entire stream in a single call (this is slightly faster).
//   MZ_FINISH implies that there are no more source bytes available beside what's already in the input buffer, and that the output buffer is large enough to hold the rest of the decompressed data.
// Return values:
//   MZ_OK on success. Either more input is needed but not available, and/or there's more output to be written but the output buffer is full.
//   MZ_STREAM_END if all needed input has been consumed and all output bytes have been written. For zlib streams, the adler-32 of the decompressed data has also been verified.
//   MZ_STREAM_ERROR if the stream is bogus.
//   MZ_DATA_ERROR if the deflate stream is invalid.
//   MZ_PARAM_ERROR if one of the parameters is invalid.
//   MZ_BUF_ERROR if no forward progress is possible because the input buffer is empty but the inflater needs more input to continue, or if the output buffer is not large enough. Call mz_inflate() again
//   with more input data, or with more room in the output buffer (except when using single call decompression, described above).
int mz_inflate(mz_streamp pStream, int flush);

// Deinitializes a decompressor.
int mz_inflateEnd(mz_streamp pStream);

// Single-call decompression.
// Returns MZ_OK on success, or one of the error codes from mz_inflate() on failure.
int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len);

// Returns a string description of the specified error code, or NULL if the error code is invalid.
const char *mz_error(int err);

// Redefine zlib-compatible names to miniz equivalents, so miniz.c can be used as a drop-in replacement for the subset of zlib that miniz.c supports.
// Define MINIZ_NO_ZLIB_COMPATIBLE_NAMES to disable zlib-compatibility if you use zlib in the same project.
#ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES
  typedef unsigned char Byte;
  typedef unsigned int uInt;
  typedef mz_ulong uLong;
  typedef Byte Bytef;
  typedef uInt uIntf;
  typedef char charf;
  typedef int intf;
  typedef void *voidpf;
  typedef uLong uLongf;
  typedef void *voidp;
  typedef void *const voidpc;
  #define Z_NULL                0
  #define Z_NO_FLUSH            MZ_NO_FLUSH
  #define Z_PARTIAL_FLUSH       MZ_PARTIAL_FLUSH
  #define Z_SYNC_FLUSH          MZ_SYNC_FLUSH
  #define Z_FULL_FLUSH          MZ_FULL_FLUSH
  #define Z_FINISH              MZ_FINISH
  #define Z_BLOCK               MZ_BLOCK
  #define Z_OK                  MZ_OK
  #define Z_STREAM_END          MZ_STREAM_END
  #define Z_NEED_DICT           MZ_NEED_DICT
  #define Z_ERRNO               MZ_ERRNO
  #define Z_STREAM_ERROR        MZ_STREAM_ERROR
  #define Z_DATA_ERROR          MZ_DATA_ERROR
  #define Z_MEM_ERROR           MZ_MEM_ERROR
  #define Z_BUF_ERROR           MZ_BUF_ERROR
  #define Z_VERSION_ERROR       MZ_VERSION_ERROR
  #define Z_PARAM_ERROR         MZ_PARAM_ERROR
  #define Z_NO_COMPRESSION      MZ_NO_COMPRESSION
  #define Z_BEST_SPEED          MZ_BEST_SPEED
  #define Z_BEST_COMPRESSION    MZ_BEST_COMPRESSION
  #define Z_DEFAULT_COMPRESSION MZ_DEFAULT_COMPRESSION
  #define Z_DEFAULT_STRATEGY    MZ_DEFAULT_STRATEGY
  #define Z_FILTERED            MZ_FILTERED
  #define Z_HUFFMAN_ONLY        MZ_HUFFMAN_ONLY
  #define Z_RLE                 MZ_RLE
  #define Z_FIXED               MZ_FIXED
  #define Z_DEFLATED            MZ_DEFLATED
  #define Z_DEFAULT_WINDOW_BITS MZ_DEFAULT_WINDOW_BITS
  #define alloc_func            mz_alloc_func
  #define free_func             mz_free_func
  #define internal_state        mz_internal_state
  #define z_stream              mz_stream
  #define deflateInit           mz_deflateInit
  #define deflateInit2          mz_deflateInit2
  #define deflateReset          mz_deflateReset
  #define deflate               mz_deflate
  #define deflateEnd            mz_deflateEnd
  #define deflateBound          mz_deflateBound
  #define compress              mz_compress
  #define compress2             mz_compress2
  #define compressBound         mz_compressBound
  #define inflateInit           mz_inflateInit
  #define inflateInit2          mz_inflateInit2
  #define inflate               mz_inflate
  #define inflateEnd            mz_inflateEnd
  #define uncompress            mz_uncompress
  #define crc32                 mz_crc32
  #define adler32               mz_adler32
  #define MAX_WBITS             15
  #define MAX_MEM_LEVEL         9
  #define zError                mz_error
  #define ZLIB_VERSION          MZ_VERSION
  #define ZLIB_VERNUM           MZ_VERNUM
  #define ZLIB_VER_MAJOR        MZ_VER_MAJOR
  #define ZLIB_VER_MINOR        MZ_VER_MINOR
  #define ZLIB_VER_REVISION     MZ_VER_REVISION
  #define ZLIB_VER_SUBREVISION  MZ_VER_SUBREVISION
  #define zlibVersion           mz_version
  #define zlib_version          mz_version()
#endif // #ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES

#endif // MINIZ_NO_ZLIB_APIS

// ------------------- Types and macros

typedef unsigned char mz_uint8;
typedef signed short mz_int16;
typedef unsigned short mz_uint16;
typedef unsigned int mz_uint32;
typedef unsigned int mz_uint;
typedef long long mz_int64;
typedef unsigned long long mz_uint64;
typedef int mz_bool;

#define MZ_FALSE (0)
#define MZ_TRUE (1)

// An attempt to work around MSVC's spammy "warning C4127: conditional expression is constant" message.
#ifdef _MSC_VER
   #define MZ_MACRO_END while (0, 0)
#else
   #define MZ_MACRO_END while (0)
#endif

// ------------------- ZIP archive reading/writing

#ifndef MINIZ_NO_ARCHIVE_APIS

enum
{
  MZ_ZIP_MAX_IO_BUF_SIZE = 64*1024,
  MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE = 260,
  MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE = 256
};

typedef struct
{
  mz_uint32 m_file_index;
  mz_uint32 m_central_dir_ofs;
  mz_uint16 m_version_made_by;
  mz_uint16 m_version_needed;
  mz_uint16 m_bit_flag;
  mz_uint16 m_method;
#ifndef MINIZ_NO_TIME
  time_t m_time;
#endif
  mz_uint32 m_crc32;
  mz_uint64 m_comp_size;
  mz_uint64 m_uncomp_size;
  mz_uint16 m_internal_attr;
  mz_uint32 m_external_attr;
  mz_uint64 m_local_header_ofs;
  mz_uint32 m_comment_size;
  char m_filename[MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE];
  char m_comment[MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE];
} mz_zip_archive_file_stat;

typedef size_t (*mz_file_read_func)(void *pOpaque, mz_uint64 file_ofs, void *pBuf, size_t n);
typedef size_t (*mz_file_write_func)(void *pOpaque, mz_uint64 file_ofs, const void *pBuf, size_t n);

struct mz_zip_internal_state_tag;
typedef struct mz_zip_internal_state_tag mz_zip_internal_state;

typedef enum
{
  MZ_ZIP_MODE_INVALID = 0,
  MZ_ZIP_MODE_READING = 1,
  MZ_ZIP_MODE_WRITING = 2,
  MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED = 3
} mz_zip_mode;

typedef struct mz_zip_archive_tag
{
  mz_uint64 m_archive_size;
  mz_uint64 m_central_directory_file_ofs;
  mz_uint m_total_files;
  mz_zip_mode m_zip_mode;

  mz_uint m_file_offset_alignment;

  mz_alloc_func m_pAlloc;
  mz_free_func m_pFree;
  mz_realloc_func m_pRealloc;
  void *m_pAlloc_opaque;

  mz_file_read_func m_pRead;
  mz_file_write_func m_pWrite;
  void *m_pIO_opaque;

  mz_zip_internal_state *m_pState;

} mz_zip_archive;

typedef enum
{
  MZ_ZIP_FLAG_CASE_SENSITIVE                = 0x0100,
  MZ_ZIP_FLAG_IGNORE_PATH                   = 0x0200,
  MZ_ZIP_FLAG_COMPRESSED_DATA               = 0x0400,
  MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY = 0x0800
} mz_zip_flags;

// ZIP archive reading

// Inits a ZIP archive reader.
// These functions read and validate the archive's central directory.
mz_bool mz_zip_reader_init(mz_zip_archive *pZip, mz_uint64 size, mz_uint32 flags);
mz_bool mz_zip_reader_init_mem(mz_zip_archive *pZip, const void *pMem, size_t size, mz_uint32 flags);

#ifndef MINIZ_NO_STDIO
mz_bool mz_zip_reader_init_file(mz_zip_archive *pZip, const char *pFilename, mz_uint32 flags);
#endif

// Returns the total number of files in the archive.
mz_uint mz_zip_reader_get_num_files(mz_zip_archive *pZip);

// Returns detailed information about an archive file entry.
mz_bool mz_zip_reader_file_stat(mz_zip_archive *pZip, mz_uint file_index, mz_zip_archive_file_stat *pStat);

// Determines if an archive file entry is a directory entry.
mz_bool mz_zip_reader_is_file_a_directory(mz_zip_archive *pZip, mz_uint file_index);
mz_bool mz_zip_reader_is_file_encrypted(mz_zip_archive *pZip, mz_uint file_index);

// Retrieves the filename of an archive file entry.
// Returns the number of bytes written to pFilename, or if filename_buf_size is 0 this function returns the number of bytes needed to fully store the filename.
mz_uint mz_zip_reader_get_filename(mz_zip_archive *pZip, mz_uint file_index, char *pFilename, mz_uint filename_buf_size);

// Attempts to locates a file in the archive's central directory.
// Valid flags: MZ_ZIP_FLAG_CASE_SENSITIVE, MZ_ZIP_FLAG_IGNORE_PATH
// Returns -1 if the file cannot be found.
int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName, const char *pComment, mz_uint flags);

// Extracts a archive file to a memory buffer using no memory allocation.
mz_bool mz_zip_reader_extract_to_mem_no_alloc(mz_zip_archive *pZip, mz_uint file_index, void *pBuf, size_t buf_size, mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size);
mz_bool mz_zip_reader_extract_file_to_mem_no_alloc(mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size, mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size);

// Extracts a archive file to a memory buffer.
mz_bool mz_zip_reader_extract_to_mem(mz_zip_archive *pZip, mz_uint file_index, void *pBuf, size_t buf_size, mz_uint flags);
mz_bool mz_zip_reader_extract_file_to_mem(mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size, mz_uint flags);

// Extracts a archive file to a dynamically allocated heap buffer.
void *mz_zip_reader_extract_to_heap(mz_zip_archive *pZip, mz_uint file_index, size_t *pSize, mz_uint flags);
void *mz_zip_reader_extract_file_to_heap(mz_zip_archive *pZip, const char *pFilename, size_t *pSize, mz_uint flags);

// Extracts a archive file using a callback function to output the file's data.
mz_bool mz_zip_reader_extract_to_callback(mz_zip_archive *pZip, mz_uint file_index, mz_file_write_func pCallback, void *pOpaque, mz_uint flags);
mz_bool mz_zip_reader_extract_file_to_callback(mz_zip_archive *pZip, const char *pFilename, mz_file_write_func pCallback, void *pOpaque, mz_uint flags);

#ifndef MINIZ_NO_STDIO
// Extracts a archive file to a disk file and sets its last accessed and modified times.
// This function only extracts files, not archive directory records.
mz_bool mz_zip_reader_extract_to_file(mz_zip_archive *pZip, mz_uint file_index, const char *pDst_filename, mz_uint flags);
mz_bool mz_zip_reader_extract_file_to_file(mz_zip_archive *pZip, const char *pArchive_filename, const char *pDst_filename, mz_uint flags);
#endif

// Ends archive reading, freeing all allocations, and closing the input archive file if mz_zip_reader_init_file() was used.
mz_bool mz_zip_reader_end(mz_zip_archive *pZip);

// ZIP archive writing

#ifndef MINIZ_NO_ARCHIVE_WRITING_APIS

// Inits a ZIP archive writer.
mz_bool mz_zip_writer_init(mz_zip_archive *pZip, mz_uint64 existing_size);
mz_bool mz_zip_writer_init_heap(mz_zip_archive *pZip, size_t size_to_reserve_at_beginning, size_t initial_allocation_size);

#ifndef MINIZ_NO_STDIO
mz_bool mz_zip_writer_init_file(mz_zip_archive *pZip, const char *pFilename, mz_uint64 size_to_reserve_at_beginning);
#endif

// Converts a ZIP archive reader object into a writer object, to allow efficient in-place file appends to occur on an existing archive.
// For archives opened using mz_zip_reader_init_file, pFilename must be the archive's filename so it can be reopened for writing. If the file can't be reopened, mz_zip_reader_end() will be called.
// For archives opened using mz_zip_reader_init_mem, the memory block must be growable using the realloc callback (which defaults to realloc unless you've overridden it).
// Finally, for archives opened using mz_zip_reader_init, the mz_zip_archive's user provided m_pWrite function cannot be NULL.
// Note: In-place archive modification is not recommended unless you know what you're doing, because if execution stops or something goes wrong before
// the archive is finalized the file's central directory will be hosed.
mz_bool mz_zip_writer_init_from_reader(mz_zip_archive *pZip, const char *pFilename);

// Adds the contents of a memory buffer to an archive. These functions record the current local time into the archive.
// To add a directory entry, call this method with an archive name ending in a forwardslash with empty buffer.
// level_and_flags - compression level (0-10, see MZ_BEST_SPEED, MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or just set to MZ_DEFAULT_COMPRESSION.
mz_bool mz_zip_writer_add_mem(mz_zip_archive *pZip, const char *pArchive_name, const void *pBuf, size_t buf_size, mz_uint level_and_flags);
mz_bool mz_zip_writer_add_mem_ex(mz_zip_archive *pZip, const char *pArchive_name, const void *pBuf, size_t buf_size, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags, mz_uint64 uncomp_size, mz_uint32 uncomp_crc32);

#ifndef MINIZ_NO_STDIO
// Adds the contents of a disk file to an archive. This function also records the disk file's modified time into the archive.
// level_and_flags - compression level (0-10, see MZ_BEST_SPEED, MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or just set to MZ_DEFAULT_COMPRESSION.
mz_bool mz_zip_writer_add_file(mz_zip_archive *pZip, const char *pArchive_name, const char *pSrc_filename, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags);
#endif

// Adds a file to an archive by fully cloning the data from another archive.
// This function fully clones the source file's compressed data (no recompression), along with its full filename, extra data, and comment fields.
mz_bool mz_zip_writer_add_from_zip_reader(mz_zip_archive *pZip, mz_zip_archive *pSource_zip, mz_uint file_index);

// Finalizes the archive by writing the central directory records followed by the end of central directory record.
// After an archive is finalized, the only valid call on the mz_zip_archive struct is mz_zip_writer_end().
// An archive must be manually finalized by calling this function for it to be valid.
mz_bool mz_zip_writer_finalize_archive(mz_zip_archive *pZip);
mz_bool mz_zip_writer_finalize_heap_archive(mz_zip_archive *pZip, void **pBuf, size_t *pSize);

// Ends archive writing, freeing all allocations, and closing the output file if mz_zip_writer_init_file() was used.
// Note for the archive to be valid, it must have been finalized before ending.
mz_bool mz_zip_writer_end(mz_zip_archive *pZip);

// Misc. high-level helper functions:

// mz_zip_add_mem_to_archive_file_in_place() efficiently (but not atomically) appends a memory blob to a ZIP archive.
// level_and_flags - compression level (0-10, see MZ_BEST_SPEED, MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or just set to MZ_DEFAULT_COMPRESSION.
mz_bool mz_zip_add_mem_to_archive_file_in_place(const char *pZip_filename, const char *pArchive_name, const void *pBuf, size_t buf_size, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags);

// Reads a single file from an archive into a heap block.
// Returns NULL on failure.
void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename, const char *pArchive_name, size_t *pSize, mz_uint zip_flags);

#endif // #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS

#endif // #ifndef MINIZ_NO_ARCHIVE_APIS

// ------------------- Low-level Decompression API Definitions

// Decompression flags used by tinfl_decompress().
// TINFL_FLAG_PARSE_ZLIB_HEADER: If set, the input has a valid zlib header and ends with an adler32 checksum (it's a valid zlib stream). Otherwise, the input is a raw deflate stream.
// TINFL_FLAG_HAS_MORE_INPUT: If set, there are more input bytes available beyond the end of the supplied input buffer. If clear, the input buffer contains all remaining input.
// TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: If set, the output buffer is large enough to hold the entire decompressed stream. If clear, the output buffer is at least the size of the dictionary (typically 32KB).
// TINFL_FLAG_COMPUTE_ADLER32: Force adler-32 checksum computation of the decompressed bytes.
enum
{
  TINFL_FLAG_PARSE_ZLIB_HEADER = 1,
  TINFL_FLAG_HAS_MORE_INPUT = 2,
  TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF = 4,
  TINFL_FLAG_COMPUTE_ADLER32 = 8
};

// High level decompression functions:
// tinfl_decompress_mem_to_heap() decompresses a block in memory to a heap block allocated via malloc().
// On entry:
//  pSrc_buf, src_buf_len: Pointer and size of the Deflate or zlib source data to decompress.
// On return:
//  Function returns a pointer to the decompressed data, or NULL on failure.
//  *pOut_len will be set to the decompressed data's size, which could be larger than src_buf_len on uncompressible data.
//  The caller must call mz_free() on the returned block when it's no longer needed.
void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags);

// tinfl_decompress_mem_to_mem() decompresses a block in memory to another block in memory.
// Returns TINFL_DECOMPRESS_MEM_TO_MEM_FAILED on failure, or the number of bytes written on success.
#define TINFL_DECOMPRESS_MEM_TO_MEM_FAILED ((size_t)(-1))
size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags);

// tinfl_decompress_mem_to_callback() decompresses a block in memory to an internal 32KB buffer, and a user provided callback function will be called to flush the buffer.
// Returns 1 on success or 0 on failure.
typedef int (*tinfl_put_buf_func_ptr)(const void* pBuf, int len, void *pUser);
int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size, tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags);

struct tinfl_decompressor_tag; typedef struct tinfl_decompressor_tag tinfl_decompressor;

// Max size of LZ dictionary.
#define TINFL_LZ_DICT_SIZE 32768

// Return status.
typedef enum
{
  TINFL_STATUS_BAD_PARAM = -3,
  TINFL_STATUS_ADLER32_MISMATCH = -2,
  TINFL_STATUS_FAILED = -1,
  TINFL_STATUS_DONE = 0,
  TINFL_STATUS_NEEDS_MORE_INPUT = 1,
  TINFL_STATUS_HAS_MORE_OUTPUT = 2
} tinfl_status;

// Initializes the decompressor to its initial state.
#define tinfl_init(r) do { (r)->m_state = 0; } MZ_MACRO_END
#define tinfl_get_adler32(r) (r)->m_check_adler32

// Main low-level decompressor coroutine function. This is the only function actually needed for decompression. All the other functions are just high-level helpers for improved usability.
// This is a universal API, i.e. it can be used as a building block to build any desired higher level decompression API. In the limit case, it can be called once per every byte input or output.
tinfl_status tinfl_decompress(tinfl_decompressor *r, const mz_uint8 *pIn_buf_next, size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, const mz_uint32 decomp_flags);

// Internal/private bits follow.
enum
{
  TINFL_MAX_HUFF_TABLES = 3, TINFL_MAX_HUFF_SYMBOLS_0 = 288, TINFL_MAX_HUFF_SYMBOLS_1 = 32, TINFL_MAX_HUFF_SYMBOLS_2 = 19,
  TINFL_FAST_LOOKUP_BITS = 10, TINFL_FAST_LOOKUP_SIZE = 1 << TINFL_FAST_LOOKUP_BITS
};

typedef struct
{
  mz_uint8 m_code_size[TINFL_MAX_HUFF_SYMBOLS_0];
  mz_int16 m_look_up[TINFL_FAST_LOOKUP_SIZE], m_tree[TINFL_MAX_HUFF_SYMBOLS_0 * 2];
} tinfl_huff_table;

#if MINIZ_HAS_64BIT_REGISTERS
  #define TINFL_USE_64BIT_BITBUF 1
#endif

#if TINFL_USE_64BIT_BITBUF
  typedef mz_uint64 tinfl_bit_buf_t;
  #define TINFL_BITBUF_SIZE (64)
#else
  typedef mz_uint32 tinfl_bit_buf_t;
  #define TINFL_BITBUF_SIZE (32)
#endif

struct tinfl_decompressor_tag
{
  mz_uint32 m_state, m_num_bits, m_zhdr0, m_zhdr1, m_z_adler32, m_final, m_type, m_check_adler32, m_dist, m_counter, m_num_extra, m_table_sizes[TINFL_MAX_HUFF_TABLES];
  tinfl_bit_buf_t m_bit_buf;
  size_t m_dist_from_out_buf_start;
  tinfl_huff_table m_tables[TINFL_MAX_HUFF_TABLES];
  mz_uint8 m_raw_header[4], m_len_codes[TINFL_MAX_HUFF_SYMBOLS_0 + TINFL_MAX_HUFF_SYMBOLS_1 + 137];
};

// ------------------- Low-level Compression API Definitions

// Set TDEFL_LESS_MEMORY to 1 to use less memory (compression will be slightly slower, and raw/dynamic blocks will be output more frequently).
#define TDEFL_LESS_MEMORY 0

// tdefl_init() compression flags logically OR'd together (low 12 bits contain the max. number of probes per dictionary search):
// TDEFL_DEFAULT_MAX_PROBES: The compressor defaults to 128 dictionary probes per dictionary search. 0=Huffman only, 1=Huffman+LZ (fastest/crap compression), 4095=Huffman+LZ (slowest/best compression).
enum
{
  TDEFL_HUFFMAN_ONLY = 0, TDEFL_DEFAULT_MAX_PROBES = 128, TDEFL_MAX_PROBES_MASK = 0xFFF
};

// TDEFL_WRITE_ZLIB_HEADER: If set, the compressor outputs a zlib header before the deflate data, and the Adler-32 of the source data at the end. Otherwise, you'll get raw deflate data.
// TDEFL_COMPUTE_ADLER32: Always compute the adler-32 of the input data (even when not writing zlib headers).
// TDEFL_GREEDY_PARSING_FLAG: Set to use faster greedy parsing, instead of more efficient lazy parsing.
// TDEFL_NONDETERMINISTIC_PARSING_FLAG: Enable to decrease the compressor's initialization time to the minimum, but the output may vary from run to run given the same input (depending on the contents of memory).
// TDEFL_RLE_MATCHES: Only look for RLE matches (matches with a distance of 1)
// TDEFL_FILTER_MATCHES: Discards matches <= 5 chars if enabled.
// TDEFL_FORCE_ALL_STATIC_BLOCKS: Disable usage of optimized Huffman tables.
// TDEFL_FORCE_ALL_RAW_BLOCKS: Only use raw (uncompressed) deflate blocks.
// The low 12 bits are reserved to control the max # of hash probes per dictionary lookup (see TDEFL_MAX_PROBES_MASK).
enum
{
  TDEFL_WRITE_ZLIB_HEADER             = 0x01000,
  TDEFL_COMPUTE_ADLER32               = 0x02000,
  TDEFL_GREEDY_PARSING_FLAG           = 0x04000,
  TDEFL_NONDETERMINISTIC_PARSING_FLAG = 0x08000,
  TDEFL_RLE_MATCHES                   = 0x10000,
  TDEFL_FILTER_MATCHES                = 0x20000,
  TDEFL_FORCE_ALL_STATIC_BLOCKS       = 0x40000,
  TDEFL_FORCE_ALL_RAW_BLOCKS          = 0x80000
};

// High level compression functions:
// tdefl_compress_mem_to_heap() compresses a block in memory to a heap block allocated via malloc().
// On entry:
//  pSrc_buf, src_buf_len: Pointer and size of source block to compress.
//  flags: The max match finder probes (default is 128) logically OR'd against the above flags. Higher probes are slower but improve compression.
// On return:
//  Function returns a pointer to the compressed data, or NULL on failure.
//  *pOut_len will be set to the compressed data's size, which could be larger than src_buf_len on uncompressible data.
//  The caller must free() the returned block when it's no longer needed.
void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags);

// tdefl_compress_mem_to_mem() compresses a block in memory to another block in memory.
// Returns 0 on failure.
size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags);

// Compresses an image to a compressed PNG file in memory.
// On entry:
//  pImage, w, h, and num_chans describe the image to compress. num_chans may be 1, 2, 3, or 4. 
//  The image pitch in bytes per scanline will be w*num_chans. The leftmost pixel on the top scanline is stored first in memory.
//  level may range from [0,10], use MZ_NO_COMPRESSION, MZ_BEST_SPEED, MZ_BEST_COMPRESSION, etc. or a decent default is MZ_DEFAULT_LEVEL
//  If flip is true, the image will be flipped on the Y axis (useful for OpenGL apps).
// On return:
//  Function returns a pointer to the compressed data, or NULL on failure.
//  *pLen_out will be set to the size of the PNG image file.
//  The caller must mz_free() the returned heap block (which will typically be larger than *pLen_out) when it's no longer needed.
void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w, int h, int num_chans, size_t *pLen_out, mz_uint level, mz_bool flip);
void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h, int num_chans, size_t *pLen_out);

// Output stream interface. The compressor uses this interface to write compressed data. It'll typically be called TDEFL_OUT_BUF_SIZE at a time.
typedef mz_bool (*tdefl_put_buf_func_ptr)(const void* pBuf, int len, void *pUser);

// tdefl_compress_mem_to_output() compresses a block to an output stream. The above helpers use this function internally.
mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags);

enum { TDEFL_MAX_HUFF_TABLES = 3, TDEFL_MAX_HUFF_SYMBOLS_0 = 288, TDEFL_MAX_HUFF_SYMBOLS_1 = 32, TDEFL_MAX_HUFF_SYMBOLS_2 = 19, TDEFL_LZ_DICT_SIZE = 32768, TDEFL_LZ_DICT_SIZE_MASK = TDEFL_LZ_DICT_SIZE - 1, TDEFL_MIN_MATCH_LEN = 3, TDEFL_MAX_MATCH_LEN = 258 };

// TDEFL_OUT_BUF_SIZE MUST be large enough to hold a single entire compressed output block (using static/fixed Huffman codes).
#if TDEFL_LESS_MEMORY
enum { TDEFL_LZ_CODE_BUF_SIZE = 24 * 1024, TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13 ) / 10, TDEFL_MAX_HUFF_SYMBOLS = 288, TDEFL_LZ_HASH_BITS = 12, TDEFL_LEVEL1_HASH_SIZE_MASK = 4095, TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3, TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS };
#else
enum { TDEFL_LZ_CODE_BUF_SIZE = 64 * 1024, TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13 ) / 10, TDEFL_MAX_HUFF_SYMBOLS = 288, TDEFL_LZ_HASH_BITS = 15, TDEFL_LEVEL1_HASH_SIZE_MASK = 4095, TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3, TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS };
#endif

// The low-level tdefl functions below may be used directly if the above helper functions aren't flexible enough. The low-level functions don't make any heap allocations, unlike the above helper functions.
typedef enum
{
  TDEFL_STATUS_BAD_PARAM = -2,
  TDEFL_STATUS_PUT_BUF_FAILED = -1,
  TDEFL_STATUS_OKAY = 0,
  TDEFL_STATUS_DONE = 1,
} tdefl_status;

// Must map to MZ_NO_FLUSH, MZ_SYNC_FLUSH, etc. enums
typedef enum
{
  TDEFL_NO_FLUSH = 0,
  TDEFL_SYNC_FLUSH = 2,
  TDEFL_FULL_FLUSH = 3,
  TDEFL_FINISH = 4
} tdefl_flush;

// tdefl's compression state structure.
typedef struct
{
  tdefl_put_buf_func_ptr m_pPut_buf_func;
  void *m_pPut_buf_user;
  mz_uint m_flags, m_max_probes[2];
  int m_greedy_parsing;
  mz_uint m_adler32, m_lookahead_pos, m_lookahead_size, m_dict_size;
  mz_uint8 *m_pLZ_code_buf, *m_pLZ_flags, *m_pOutput_buf, *m_pOutput_buf_end;
  mz_uint m_num_flags_left, m_total_lz_bytes, m_lz_code_buf_dict_pos, m_bits_in, m_bit_buffer;
  mz_uint m_saved_match_dist, m_saved_match_len, m_saved_lit, m_output_flush_ofs, m_output_flush_remaining, m_finished, m_block_index, m_wants_to_finish;
  tdefl_status m_prev_return_status;
  const void *m_pIn_buf;
  void *m_pOut_buf;
  size_t *m_pIn_buf_size, *m_pOut_buf_size;
  tdefl_flush m_flush;
  const mz_uint8 *m_pSrc;
  size_t m_src_buf_left, m_out_buf_ofs;
  mz_uint8 m_dict[TDEFL_LZ_DICT_SIZE + TDEFL_MAX_MATCH_LEN - 1];
  mz_uint16 m_huff_count[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
  mz_uint16 m_huff_codes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
  mz_uint8 m_huff_code_sizes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
  mz_uint8 m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE];
  mz_uint16 m_next[TDEFL_LZ_DICT_SIZE];
  mz_uint16 m_hash[TDEFL_LZ_HASH_SIZE];
  mz_uint8 m_output_buf[TDEFL_OUT_BUF_SIZE];
} tdefl_compressor;

// Initializes the compressor.
// There is no corresponding deinit() function because the tdefl API's do not dynamically allocate memory.
// pBut_buf_func: If NULL, output data will be supplied to the specified callback. In this case, the user should call the tdefl_compress_buffer() API for compression.
// If pBut_buf_func is NULL the user should always call the tdefl_compress() API.
// flags: See the above enums (TDEFL_HUFFMAN_ONLY, TDEFL_WRITE_ZLIB_HEADER, etc.)
tdefl_status tdefl_init(tdefl_compressor *d, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags);

// Compresses a block of data, consuming as much of the specified input buffer as possible, and writing as much compressed data to the specified output buffer as possible.
tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf, size_t *pIn_buf_size, void *pOut_buf, size_t *pOut_buf_size, tdefl_flush flush);

// tdefl_compress_buffer() is only usable when the tdefl_init() is called with a non-NULL tdefl_put_buf_func_ptr.
// tdefl_compress_buffer() always consumes the entire input buffer.
tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf, size_t in_buf_size, tdefl_flush flush);

tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d);
mz_uint32 tdefl_get_adler32(tdefl_compressor *d);

// Can't use tdefl_create_comp_flags_from_zip_params if MINIZ_NO_ZLIB_APIS isn't defined, because it uses some of its macros.
#ifndef MINIZ_NO_ZLIB_APIS
// Create tdefl_compress() flags given zlib-style compression parameters.
// level may range from [0,10] (where 10 is absolute max compression, but may be much slower on some files)
// window_bits may be -15 (raw deflate) or 15 (zlib)
// strategy may be either MZ_DEFAULT_STRATEGY, MZ_FILTERED, MZ_HUFFMAN_ONLY, MZ_RLE, or MZ_FIXED
mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits, int strategy);
#endif // #ifndef MINIZ_NO_ZLIB_APIS

#ifdef __cplusplus
}
#endif

#endif // MINIZ_HEADER_INCLUDED

// ------------------- End of Header: Implementation follows. (If you only want the header, define MINIZ_HEADER_FILE_ONLY.)

#ifndef MINIZ_HEADER_FILE_ONLY

typedef unsigned char mz_validate_uint16[sizeof(mz_uint16)==2 ? 1 : -1];
typedef unsigned char mz_validate_uint32[sizeof(mz_uint32)==4 ? 1 : -1];
typedef unsigned char mz_validate_uint64[sizeof(mz_uint64)==8 ? 1 : -1];

#include <string.h>
#include <assert.h>

#define MZ_ASSERT(x) assert(x)

#ifdef MINIZ_NO_MALLOC
  #define MZ_MALLOC(x) NULL
  #define MZ_FREE(x) (void)x, ((void)0)
  #define MZ_REALLOC(p, x) NULL
#else
  #define MZ_MALLOC(x) malloc(x)
  #define MZ_FREE(x) free(x)
  #define MZ_REALLOC(p, x) realloc(p, x)
#endif

#define MZ_MAX(a,b) (((a)>(b))?(a):(b))
#define MZ_MIN(a,b) (((a)<(b))?(a):(b))
#define MZ_CLEAR_OBJ(obj) memset(&(obj), 0, sizeof(obj))

#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
  #define MZ_READ_LE16(p) *((const mz_uint16 *)(p))
  #define MZ_READ_LE32(p) *((const mz_uint32 *)(p))
#else
  #define MZ_READ_LE16(p) ((mz_uint32)(((const mz_uint8 *)(p))[0]) | ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U))
  #define MZ_READ_LE32(p) ((mz_uint32)(((const mz_uint8 *)(p))[0]) | ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U) | ((mz_uint32)(((const mz_uint8 *)(p))[2]) << 16U) | ((mz_uint32)(((const mz_uint8 *)(p))[3]) << 24U))
#endif

#ifdef _MSC_VER
  #define MZ_FORCEINLINE __forceinline
#elif defined(__GNUC__)
  #define MZ_FORCEINLINE inline __attribute__((__always_inline__))
#else
  #define MZ_FORCEINLINE inline
#endif

#ifdef __cplusplus
  extern "C" {
#endif

// ------------------- zlib-style API's

mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len)
{
  mz_uint32 i, s1 = (mz_uint32)(adler & 0xffff), s2 = (mz_uint32)(adler >> 16); size_t block_len = buf_len % 5552;
  if (!ptr) return MZ_ADLER32_INIT;
  while (buf_len) {
    for (i = 0; i + 7 < block_len; i += 8, ptr += 8) {
      s1 += ptr[0], s2 += s1; s1 += ptr[1], s2 += s1; s1 += ptr[2], s2 += s1; s1 += ptr[3], s2 += s1;
      s1 += ptr[4], s2 += s1; s1 += ptr[5], s2 += s1; s1 += ptr[6], s2 += s1; s1 += ptr[7], s2 += s1;
    }
    for ( ; i < block_len; ++i) s1 += *ptr++, s2 += s1;
    s1 %= 65521U, s2 %= 65521U; buf_len -= block_len; block_len = 5552;
  }
  return (s2 << 16) + s1;
}

// Karl Malbrain's compact CRC-32. See "A compact CCITT crc16 and crc32 C implementation that balances processor cache usage against speed": http://www.geocities.com/malbrain/
mz_ulong mz_crc32(mz_ulong crc, const mz_uint8 *ptr, size_t buf_len)
{
  static const mz_uint32 s_crc32[16] = { 0, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
    0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c };
  mz_uint32 crcu32 = (mz_uint32)crc;
  if (!ptr) return MZ_CRC32_INIT;
  crcu32 = ~crcu32; while (buf_len--) { mz_uint8 b = *ptr++; crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b & 0xF)]; crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b >> 4)]; }
  return ~crcu32;
}

void mz_free(void *p)
{
  MZ_FREE(p);
}

#ifndef MINIZ_NO_ZLIB_APIS

static void *def_alloc_func(void *opaque, size_t items, size_t size) { (void)opaque, (void)items, (void)size; return MZ_MALLOC(items * size); }
static void def_free_func(void *opaque, void *address) { (void)opaque, (void)address; MZ_FREE(address); }
static void *def_realloc_func(void *opaque, void *address, size_t items, size_t size) { (void)opaque, (void)address, (void)items, (void)size; return MZ_REALLOC(address, items * size); }

const char *mz_version(void)
{
  return MZ_VERSION;
}

int mz_deflateInit(mz_streamp pStream, int level)
{
  return mz_deflateInit2(pStream, level, MZ_DEFLATED, MZ_DEFAULT_WINDOW_BITS, 9, MZ_DEFAULT_STRATEGY);
}

int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits, int mem_level, int strategy)
{
  tdefl_compressor *pComp;
  mz_uint comp_flags = TDEFL_COMPUTE_ADLER32 | tdefl_create_comp_flags_from_zip_params(level, window_bits, strategy);

  if (!pStream) return MZ_STREAM_ERROR;
  if ((method != MZ_DEFLATED) || ((mem_level < 1) || (mem_level > 9)) || ((window_bits != MZ_DEFAULT_WINDOW_BITS) && (-window_bits != MZ_DEFAULT_WINDOW_BITS))) return MZ_PARAM_ERROR;

  pStream->data_type = 0;
  pStream->adler = MZ_ADLER32_INIT;
  pStream->msg = NULL;
  pStream->reserved = 0;
  pStream->total_in = 0;
  pStream->total_out = 0;
  if (!pStream->zalloc) pStream->zalloc = def_alloc_func;
  if (!pStream->zfree) pStream->zfree = def_free_func;

  pComp = (tdefl_compressor *)pStream->zalloc(pStream->opaque, 1, sizeof(tdefl_compressor));
  if (!pComp)
    return MZ_MEM_ERROR;

  pStream->state = (struct mz_internal_state *)pComp;

  if (tdefl_init(pComp, NULL, NULL, comp_flags) != TDEFL_STATUS_OKAY)
  {
    mz_deflateEnd(pStream);
    return MZ_PARAM_ERROR;
  }

  return MZ_OK;
}

int mz_deflateReset(mz_streamp pStream)
{
  if ((!pStream) || (!pStream->state) || (!pStream->zalloc) || (!pStream->zfree)) return MZ_STREAM_ERROR;
  pStream->total_in = pStream->total_out = 0;
  tdefl_init((tdefl_compressor*)pStream->state, NULL, NULL, ((tdefl_compressor*)pStream->state)->m_flags);
  return MZ_OK;
}

int mz_deflate(mz_streamp pStream, int flush)
{
  size_t in_bytes, out_bytes;
  mz_ulong orig_total_in, orig_total_out;
  int mz_status = MZ_OK;

  if ((!pStream) || (!pStream->state) || (flush < 0) || (flush > MZ_FINISH) || (!pStream->next_out)) return MZ_STREAM_ERROR;
  if (!pStream->avail_out) return MZ_BUF_ERROR;

  if (flush == MZ_PARTIAL_FLUSH) flush = MZ_SYNC_FLUSH;

  if (((tdefl_compressor*)pStream->state)->m_prev_return_status == TDEFL_STATUS_DONE)
    return (flush == MZ_FINISH) ? MZ_STREAM_END : MZ_BUF_ERROR;

  orig_total_in = pStream->total_in; orig_total_out = pStream->total_out;
  for ( ; ; )
  {
    tdefl_status defl_status;
    in_bytes = pStream->avail_in; out_bytes = pStream->avail_out;

    defl_status = tdefl_compress((tdefl_compressor*)pStream->state, pStream->next_in, &in_bytes, pStream->next_out, &out_bytes, (tdefl_flush)flush);
    pStream->next_in += (mz_uint)in_bytes; pStream->avail_in -= (mz_uint)in_bytes;
    pStream->total_in += (mz_uint)in_bytes; pStream->adler = tdefl_get_adler32((tdefl_compressor*)pStream->state);

    pStream->next_out += (mz_uint)out_bytes; pStream->avail_out -= (mz_uint)out_bytes;
    pStream->total_out += (mz_uint)out_bytes;

    if (defl_status < 0)
    {
      mz_status = MZ_STREAM_ERROR;
      break;
    }
    else if (defl_status == TDEFL_STATUS_DONE)
    {
      mz_status = MZ_STREAM_END;
      break;
    }
    else if (!pStream->avail_out)
      break;
    else if ((!pStream->avail_in) && (flush != MZ_FINISH))
    {
      if ((flush) || (pStream->total_in != orig_total_in) || (pStream->total_out != orig_total_out))
        break;
      return MZ_BUF_ERROR; // Can't make forward progress without some input.
    }
  }
  return mz_status;
}

int mz_deflateEnd(mz_streamp pStream)
{
  if (!pStream) return MZ_STREAM_ERROR;
  if (pStream->state)
  {
    pStream->zfree(pStream->opaque, pStream->state);
    pStream->state = NULL;
  }
  return MZ_OK;
}

mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len)
{
  (void)pStream;
  // This is really over conservative. (And lame, but it's actually pretty tricky to compute a true upper bound given the way tdefl's blocking works.)
  return MZ_MAX(128 + (source_len * 110) / 100, 128 + source_len + ((source_len / (31 * 1024)) + 1) * 5);
}

int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len, int level)
{
  int status;
  mz_stream stream;
  memset(&stream, 0, sizeof(stream));

  // In case mz_ulong is 64-bits (argh I hate longs).
  if ((source_len | *pDest_len) > 0xFFFFFFFFU) return MZ_PARAM_ERROR;

  stream.next_in = pSource;
  stream.avail_in = (mz_uint32)source_len;
  stream.next_out = pDest;
  stream.avail_out = (mz_uint32)*pDest_len;

  status = mz_deflateInit(&stream, level);
  if (status != MZ_OK) return status;

  status = mz_deflate(&stream, MZ_FINISH);
  if (status != MZ_STREAM_END)
  {
    mz_deflateEnd(&stream);
    return (status == MZ_OK) ? MZ_BUF_ERROR : status;
  }

  *pDest_len = stream.total_out;
  return mz_deflateEnd(&stream);
}

int mz_compress(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len)
{
  return mz_compress2(pDest, pDest_len, pSource, source_len, MZ_DEFAULT_COMPRESSION);
}

mz_ulong mz_compressBound(mz_ulong source_len)
{
  return mz_deflateBound(NULL, source_len);
}

typedef struct
{
  tinfl_decompressor m_decomp;
  mz_uint m_dict_ofs, m_dict_avail, m_first_call, m_has_flushed; int m_window_bits;
  mz_uint8 m_dict[TINFL_LZ_DICT_SIZE];
  tinfl_status m_last_status;
} inflate_state;

int mz_inflateInit2(mz_streamp pStream, int window_bits)
{
  inflate_state *pDecomp;
  if (!pStream) return MZ_STREAM_ERROR;
  if ((window_bits != MZ_DEFAULT_WINDOW_BITS) && (-window_bits != MZ_DEFAULT_WINDOW_BITS)) return MZ_PARAM_ERROR;

  pStream->data_type = 0;
  pStream->adler = 0;
  pStream->msg = NULL;
  pStream->total_in = 0;
  pStream->total_out = 0;
  pStream->reserved = 0;
  if (!pStream->zalloc) pStream->zalloc = def_alloc_func;
  if (!pStream->zfree) pStream->zfree = def_free_func;

  pDecomp = (inflate_state*)pStream->zalloc(pStream->opaque, 1, sizeof(inflate_state));
  if (!pDecomp) return MZ_MEM_ERROR;

  pStream->state = (struct mz_internal_state *)pDecomp;

  tinfl_init(&pDecomp->m_decomp);
  pDecomp->m_dict_ofs = 0;
  pDecomp->m_dict_avail = 0;
  pDecomp->m_last_status = TINFL_STATUS_NEEDS_MORE_INPUT;
  pDecomp->m_first_call = 1;
  pDecomp->m_has_flushed = 0;
  pDecomp->m_window_bits = window_bits;

  return MZ_OK;
}

int mz_inflateInit(mz_streamp pStream)
{
   return mz_inflateInit2(pStream, MZ_DEFAULT_WINDOW_BITS);
}

int mz_inflate(mz_streamp pStream, int flush)
{
  inflate_state* pState;
  mz_uint n, first_call, decomp_flags = TINFL_FLAG_COMPUTE_ADLER32;
  size_t in_bytes, out_bytes, orig_avail_in;
  tinfl_status status;

  if ((!pStream) || (!pStream->state)) return MZ_STREAM_ERROR;
  if (flush == MZ_PARTIAL_FLUSH) flush = MZ_SYNC_FLUSH;
  if ((flush) && (flush != MZ_SYNC_FLUSH) && (flush != MZ_FINISH)) return MZ_STREAM_ERROR;

  pState = (inflate_state*)pStream->state;
  if (pState->m_window_bits > 0) decomp_flags |= TINFL_FLAG_PARSE_ZLIB_HEADER;
  orig_avail_in = pStream->avail_in;

  first_call = pState->m_first_call; pState->m_first_call = 0;
  if (pState->m_last_status < 0) return MZ_DATA_ERROR;

  if (pState->m_has_flushed && (flush != MZ_FINISH)) return MZ_STREAM_ERROR;
  pState->m_has_flushed |= (flush == MZ_FINISH);

  if ((flush == MZ_FINISH) && (first_call))
  {
    // MZ_FINISH on the first call implies that the input and output buffers are large enough to hold the entire compressed/decompressed file.
    decomp_flags |= TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF;
    in_bytes = pStream->avail_in; out_bytes = pStream->avail_out;
    status = tinfl_decompress(&pState->m_decomp, pStream->next_in, &in_bytes, pStream->next_out, pStream->next_out, &out_bytes, decomp_flags);
    pState->m_last_status = status;
    pStream->next_in += (mz_uint)in_bytes; pStream->avail_in -= (mz_uint)in_bytes; pStream->total_in += (mz_uint)in_bytes;
    pStream->adler = tinfl_get_adler32(&pState->m_decomp);
    pStream->next_out += (mz_uint)out_bytes; pStream->avail_out -= (mz_uint)out_bytes; pStream->total_out += (mz_uint)out_bytes;

    if (status < 0)
      return MZ_DATA_ERROR;
    else if (status != TINFL_STATUS_DONE)
    {
      pState->m_last_status = TINFL_STATUS_FAILED;
      return MZ_BUF_ERROR;
    }
    return MZ_STREAM_END;
  }
  // flush != MZ_FINISH then we must assume there's more input.
  if (flush != MZ_FINISH) decomp_flags |= TINFL_FLAG_HAS_MORE_INPUT;

  if (pState->m_dict_avail)
  {
    n = MZ_MIN(pState->m_dict_avail, pStream->avail_out);
    memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n);
    pStream->next_out += n; pStream->avail_out -= n; pStream->total_out += n;
    pState->m_dict_avail -= n; pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1);
    return ((pState->m_last_status == TINFL_STATUS_DONE) && (!pState->m_dict_avail)) ? MZ_STREAM_END : MZ_OK;
  }

  for ( ; ; )
  {
    in_bytes = pStream->avail_in;
    out_bytes = TINFL_LZ_DICT_SIZE - pState->m_dict_ofs;

    status = tinfl_decompress(&pState->m_decomp, pStream->next_in, &in_bytes, pState->m_dict, pState->m_dict + pState->m_dict_ofs, &out_bytes, decomp_flags);
    pState->m_last_status = status;

    pStream->next_in += (mz_uint)in_bytes; pStream->avail_in -= (mz_uint)in_bytes;
    pStream->total_in += (mz_uint)in_bytes; pStream->adler = tinfl_get_adler32(&pState->m_decomp);

    pState->m_dict_avail = (mz_uint)out_bytes;

    n = MZ_MIN(pState->m_dict_avail, pStream->avail_out);
    memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n);
    pStream->next_out += n; pStream->avail_out -= n; pStream->total_out += n;
    pState->m_dict_avail -= n; pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1);

    if (status < 0)
       return MZ_DATA_ERROR; // Stream is corrupted (there could be some uncompressed data left in the output dictionary - oh well).
    else if ((status == TINFL_STATUS_NEEDS_MORE_INPUT) && (!orig_avail_in))
      return MZ_BUF_ERROR; // Signal caller that we can't make forward progress without supplying more input or by setting flush to MZ_FINISH.
    else if (flush == MZ_FINISH)
    {
       // The output buffer MUST be large to hold the remaining uncompressed data when flush==MZ_FINISH.
       if (status == TINFL_STATUS_DONE)
          return pState->m_dict_avail ? MZ_BUF_ERROR : MZ_STREAM_END;
       // status here must be TINFL_STATUS_HAS_MORE_OUTPUT, which means there's at least 1 more byte on the way. If there's no more room left in the output buffer then something is wrong.
       else if (!pStream->avail_out)
          return MZ_BUF_ERROR;
    }
    else if ((status == TINFL_STATUS_DONE) || (!pStream->avail_in) || (!pStream->avail_out) || (pState->m_dict_avail))
      break;
  }

  return ((status == TINFL_STATUS_DONE) && (!pState->m_dict_avail)) ? MZ_STREAM_END : MZ_OK;
}

int mz_inflateEnd(mz_streamp pStream)
{
  if (!pStream)
    return MZ_STREAM_ERROR;
  if (pStream->state)
  {
    pStream->zfree(pStream->opaque, pStream->state);
    pStream->state = NULL;
  }
  return MZ_OK;
}

int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len, const unsigned char *pSource, mz_ulong source_len)
{
  mz_stream stream;
  int status;
  memset(&stream, 0, sizeof(stream));

  // In case mz_ulong is 64-bits (argh I hate longs).
  if ((source_len | *pDest_len) > 0xFFFFFFFFU) return MZ_PARAM_ERROR;

  stream.next_in = pSource;
  stream.avail_in = (mz_uint32)source_len;
  stream.next_out = pDest;
  stream.avail_out = (mz_uint32)*pDest_len;

  status = mz_inflateInit(&stream);
  if (status != MZ_OK)
    return status;

  status = mz_inflate(&stream, MZ_FINISH);
  if (status != MZ_STREAM_END)
  {
    mz_inflateEnd(&stream);
    return ((status == MZ_BUF_ERROR) && (!stream.avail_in)) ? MZ_DATA_ERROR : status;
  }
  *pDest_len = stream.total_out;

  return mz_inflateEnd(&stream);
}

const char *mz_error(int err)
{
  static struct { int m_err; const char *m_pDesc; } s_error_descs[] =
  {
    { MZ_OK, "" }, { MZ_STREAM_END, "stream end" }, { MZ_NEED_DICT, "need dictionary" }, { MZ_ERRNO, "file error" }, { MZ_STREAM_ERROR, "stream error" },
    { MZ_DATA_ERROR, "data error" }, { MZ_MEM_ERROR, "out of memory" }, { MZ_BUF_ERROR, "buf error" }, { MZ_VERSION_ERROR, "version error" }, { MZ_PARAM_ERROR, "parameter error" }
  };
  mz_uint i; for (i = 0; i < sizeof(s_error_descs) / sizeof(s_error_descs[0]); ++i) if (s_error_descs[i].m_err == err) return s_error_descs[i].m_pDesc;
  return NULL;
}

#endif //MINIZ_NO_ZLIB_APIS

// ------------------- Low-level Decompression (completely independent from all compression API's)

#define TINFL_MEMCPY(d, s, l) memcpy(d, s, l)
#define TINFL_MEMSET(p, c, l) memset(p, c, l)

#define TINFL_CR_BEGIN switch(r->m_state) { case 0:
#define TINFL_CR_RETURN(state_index, result) do { status = result; r->m_state = state_index; goto common_exit; case state_index:; } MZ_MACRO_END
#define TINFL_CR_RETURN_FOREVER(state_index, result) do { for ( ; ; ) { TINFL_CR_RETURN(state_index, result); } } MZ_MACRO_END
#define TINFL_CR_FINISH }

// TODO: If the caller has indicated that there's no more input, and we attempt to read beyond the input buf, then something is wrong with the input because the inflator never
// reads ahead more than it needs to. Currently TINFL_GET_BYTE() pads the end of the stream with 0's in this scenario.
#define TINFL_GET_BYTE(state_index, c) do { \
  if (pIn_buf_cur >= pIn_buf_end) { \
    for ( ; ; ) { \
      if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) { \
        TINFL_CR_RETURN(state_index, TINFL_STATUS_NEEDS_MORE_INPUT); \
        if (pIn_buf_cur < pIn_buf_end) { \
          c = *pIn_buf_cur++; \
          break; \
        } \
      } else { \
        c = 0; \
        break; \
      } \
    } \
  } else c = *pIn_buf_cur++; } MZ_MACRO_END

#define TINFL_NEED_BITS(state_index, n) do { mz_uint c; TINFL_GET_BYTE(state_index, c); bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); num_bits += 8; } while (num_bits < (mz_uint)(n))
#define TINFL_SKIP_BITS(state_index, n) do { if (num_bits < (mz_uint)(n)) { TINFL_NEED_BITS(state_index, n); } bit_buf >>= (n); num_bits -= (n); } MZ_MACRO_END
#define TINFL_GET_BITS(state_index, b, n) do { if (num_bits < (mz_uint)(n)) { TINFL_NEED_BITS(state_index, n); } b = bit_buf & ((1 << (n)) - 1); bit_buf >>= (n); num_bits -= (n); } MZ_MACRO_END

// TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes remaining in the input buffer falls below 2.
// It reads just enough bytes from the input stream that are needed to decode the next Huffman code (and absolutely no more). It works by trying to fully decode a
// Huffman code by using whatever bits are currently present in the bit buffer. If this fails, it reads another byte, and tries again until it succeeds or until the
// bit buffer contains >=15 bits (deflate's max. Huffman code size).
#define TINFL_HUFF_BITBUF_FILL(state_index, pHuff) \
  do { \
    temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]; \
    if (temp >= 0) { \
      code_len = temp >> 9; \
      if ((code_len) && (num_bits >= code_len)) \
      break; \
    } else if (num_bits > TINFL_FAST_LOOKUP_BITS) { \
       code_len = TINFL_FAST_LOOKUP_BITS; \
       do { \
          temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \
       } while ((temp < 0) && (num_bits >= (code_len + 1))); if (temp >= 0) break; \
    } TINFL_GET_BYTE(state_index, c); bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); num_bits += 8; \
  } while (num_bits < 15);

// TINFL_HUFF_DECODE() decodes the next Huffman coded symbol. It's more complex than you would initially expect because the zlib API expects the decompressor to never read
// beyond the final byte of the deflate stream. (In other words, when this macro wants to read another byte from the input, it REALLY needs another byte in order to fully
// decode the next Huffman code.) Handling this properly is particularly important on raw deflate (non-zlib) streams, which aren't followed by a byte aligned adler-32.
// The slow path is only executed at the very end of the input buffer.
#define TINFL_HUFF_DECODE(state_index, sym, pHuff) do { \
  int temp; mz_uint code_len, c; \
  if (num_bits < 15) { \
    if ((pIn_buf_end - pIn_buf_cur) < 2) { \
       TINFL_HUFF_BITBUF_FILL(state_index, pHuff); \
    } else { \
       bit_buf |= (((tinfl_bit_buf_t)pIn_buf_cur[0]) << num_bits) | (((tinfl_bit_buf_t)pIn_buf_cur[1]) << (num_bits + 8)); pIn_buf_cur += 2; num_bits += 16; \
    } \
  } \
  if ((temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0) \
    code_len = temp >> 9, temp &= 511; \
  else { \
    code_len = TINFL_FAST_LOOKUP_BITS; do { temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; } while (temp < 0); \
  } sym = temp; bit_buf >>= code_len; num_bits -= code_len; } MZ_MACRO_END

tinfl_status tinfl_decompress(tinfl_decompressor *r, const mz_uint8 *pIn_buf_next, size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, const mz_uint32 decomp_flags)
{
  static const int s_length_base[31] = { 3,4,5,6,7,8,9,10,11,13, 15,17,19,23,27,31,35,43,51,59, 67,83,99,115,131,163,195,227,258,0,0 };
  static const int s_length_extra[31]= { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 };
  static const int s_dist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, 257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0};
  static const int s_dist_extra[32] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
  static const mz_uint8 s_length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 };
  static const int s_min_table_sizes[3] = { 257, 1, 4 };

  tinfl_status status = TINFL_STATUS_FAILED; mz_uint32 num_bits, dist, counter, num_extra; tinfl_bit_buf_t bit_buf;
  const mz_uint8 *pIn_buf_cur = pIn_buf_next, *const pIn_buf_end = pIn_buf_next + *pIn_buf_size;
  mz_uint8 *pOut_buf_cur = pOut_buf_next, *const pOut_buf_end = pOut_buf_next + *pOut_buf_size;
  size_t out_buf_size_mask = (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) ? (size_t)-1 : ((pOut_buf_next - pOut_buf_start) + *pOut_buf_size) - 1, dist_from_out_buf_start;

  // Ensure the output buffer's size is a power of 2, unless the output buffer is large enough to hold the entire output file (in which case it doesn't matter).
  if (((out_buf_size_mask + 1) & out_buf_size_mask) || (pOut_buf_next < pOut_buf_start)) { *pIn_buf_size = *pOut_buf_size = 0; return TINFL_STATUS_BAD_PARAM; }

  num_bits = r->m_num_bits; bit_buf = r->m_bit_buf; dist = r->m_dist; counter = r->m_counter; num_extra = r->m_num_extra; dist_from_out_buf_start = r->m_dist_from_out_buf_start;
  TINFL_CR_BEGIN

  bit_buf = num_bits = dist = counter = num_extra = r->m_zhdr0 = r->m_zhdr1 = 0; r->m_z_adler32 = r->m_check_adler32 = 1;
  if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER)
  {
    TINFL_GET_BYTE(1, r->m_zhdr0); TINFL_GET_BYTE(2, r->m_zhdr1);
    counter = (((r->m_zhdr0 * 256 + r->m_zhdr1) % 31 != 0) || (r->m_zhdr1 & 32) || ((r->m_zhdr0 & 15) != 8));
    if (!(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) counter |= (((1U << (8U + (r->m_zhdr0 >> 4))) > 32768U) || ((out_buf_size_mask + 1) < (size_t)(1U << (8U + (r->m_zhdr0 >> 4)))));
    if (counter) { TINFL_CR_RETURN_FOREVER(36, TINFL_STATUS_FAILED); }
  }

  do
  {
    TINFL_GET_BITS(3, r->m_final, 3); r->m_type = r->m_final >> 1;
    if (r->m_type == 0)
    {
      TINFL_SKIP_BITS(5, num_bits & 7);
      for (counter = 0; counter < 4; ++counter) { if (num_bits) TINFL_GET_BITS(6, r->m_raw_header[counter], 8); else TINFL_GET_BYTE(7, r->m_raw_header[counter]); }
      if ((counter = (r->m_raw_header[0] | (r->m_raw_header[1] << 8))) != (mz_uint)(0xFFFF ^ (r->m_raw_header[2] | (r->m_raw_header[3] << 8)))) { TINFL_CR_RETURN_FOREVER(39, TINFL_STATUS_FAILED); }
      while ((counter) && (num_bits))
      {
        TINFL_GET_BITS(51, dist, 8);
        while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(52, TINFL_STATUS_HAS_MORE_OUTPUT); }
        *pOut_buf_cur++ = (mz_uint8)dist;
        counter--;
      }
      while (counter)
      {
        size_t n; while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(9, TINFL_STATUS_HAS_MORE_OUTPUT); }
        while (pIn_buf_cur >= pIn_buf_end)
        {
          if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT)
          {
            TINFL_CR_RETURN(38, TINFL_STATUS_NEEDS_MORE_INPUT);
          }
          else
          {
            TINFL_CR_RETURN_FOREVER(40, TINFL_STATUS_FAILED);
          }
        }
        n = MZ_MIN(MZ_MIN((size_t)(pOut_buf_end - pOut_buf_cur), (size_t)(pIn_buf_end - pIn_buf_cur)), counter);
        TINFL_MEMCPY(pOut_buf_cur, pIn_buf_cur, n); pIn_buf_cur += n; pOut_buf_cur += n; counter -= (mz_uint)n;
      }
    }
    else if (r->m_type == 3)
    {
      TINFL_CR_RETURN_FOREVER(10, TINFL_STATUS_FAILED);
    }
    else
    {
      if (r->m_type == 1)
      {
        mz_uint8 *p = r->m_tables[0].m_code_size; mz_uint i;
        r->m_table_sizes[0] = 288; r->m_table_sizes[1] = 32; TINFL_MEMSET(r->m_tables[1].m_code_size, 5, 32);
        for ( i = 0; i <= 143; ++i) *p++ = 8; for ( ; i <= 255; ++i) *p++ = 9; for ( ; i <= 279; ++i) *p++ = 7; for ( ; i <= 287; ++i) *p++ = 8;
      }
      else
      {
        for (counter = 0; counter < 3; counter++) { TINFL_GET_BITS(11, r->m_table_sizes[counter], "\05\05\04"[counter]); r->m_table_sizes[counter] += s_min_table_sizes[counter]; }
        MZ_CLEAR_OBJ(r->m_tables[2].m_code_size); for (counter = 0; counter < r->m_table_sizes[2]; counter++) { mz_uint s; TINFL_GET_BITS(14, s, 3); r->m_tables[2].m_code_size[s_length_dezigzag[counter]] = (mz_uint8)s; }
        r->m_table_sizes[2] = 19;
      }
      for ( ; (int)r->m_type >= 0; r->m_type--)
      {
        int tree_next, tree_cur; tinfl_huff_table *pTable;
        mz_uint i, j, used_syms, total, sym_index, next_code[17], total_syms[16]; pTable = &r->m_tables[r->m_type]; MZ_CLEAR_OBJ(total_syms); MZ_CLEAR_OBJ(pTable->m_look_up); MZ_CLEAR_OBJ(pTable->m_tree);
        for (i = 0; i < r->m_table_sizes[r->m_type]; ++i) total_syms[pTable->m_code_size[i]]++;
        used_syms = 0, total = 0; next_code[0] = next_code[1] = 0;
        for (i = 1; i <= 15; ++i) { used_syms += total_syms[i]; next_code[i + 1] = (total = ((total + total_syms[i]) << 1)); }
        if ((65536 != total) && (used_syms > 1))
        {
          TINFL_CR_RETURN_FOREVER(35, TINFL_STATUS_FAILED);
        }
        for (tree_next = -1, sym_index = 0; sym_index < r->m_table_sizes[r->m_type]; ++sym_index)
        {
          mz_uint rev_code = 0, l, cur_code, code_size = pTable->m_code_size[sym_index]; if (!code_size) continue;
          cur_code = next_code[code_size]++; for (l = code_size; l > 0; l--, cur_code >>= 1) rev_code = (rev_code << 1) | (cur_code & 1);
          if (code_size <= TINFL_FAST_LOOKUP_BITS) { mz_int16 k = (mz_int16)((code_size << 9) | sym_index); while (rev_code < TINFL_FAST_LOOKUP_SIZE) { pTable->m_look_up[rev_code] = k; rev_code += (1 << code_size); } continue; }
          if (0 == (tree_cur = pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)])) { pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)] = (mz_int16)tree_next; tree_cur = tree_next; tree_next -= 2; }
          rev_code >>= (TINFL_FAST_LOOKUP_BITS - 1);
          for (j = code_size; j > (TINFL_FAST_LOOKUP_BITS + 1); j--)
          {
            tree_cur -= ((rev_code >>= 1) & 1);
            if (!pTable->m_tree[-tree_cur - 1]) { pTable->m_tree[-tree_cur - 1] = (mz_int16)tree_next; tree_cur = tree_next; tree_next -= 2; } else tree_cur = pTable->m_tree[-tree_cur - 1];
          }
          tree_cur -= ((rev_code >>= 1) & 1); pTable->m_tree[-tree_cur - 1] = (mz_int16)sym_index;
        }
        if (r->m_type == 2)
        {
          for (counter = 0; counter < (r->m_table_sizes[0] + r->m_table_sizes[1]); )
          {
            mz_uint s; TINFL_HUFF_DECODE(16, dist, &r->m_tables[2]); if (dist < 16) { r->m_len_codes[counter++] = (mz_uint8)dist; continue; }
            if ((dist == 16) && (!counter))
            {
              TINFL_CR_RETURN_FOREVER(17, TINFL_STATUS_FAILED);
            }
            num_extra = "\02\03\07"[dist - 16]; TINFL_GET_BITS(18, s, num_extra); s += "\03\03\013"[dist - 16];
            TINFL_MEMSET(r->m_len_codes + counter, (dist == 16) ? r->m_len_codes[counter - 1] : 0, s); counter += s;
          }
          if ((r->m_table_sizes[0] + r->m_table_sizes[1]) != counter)
          {
            TINFL_CR_RETURN_FOREVER(21, TINFL_STATUS_FAILED);
          }
          TINFL_MEMCPY(r->m_tables[0].m_code_size, r->m_len_codes, r->m_table_sizes[0]); TINFL_MEMCPY(r->m_tables[1].m_code_size, r->m_len_codes + r->m_table_sizes[0], r->m_table_sizes[1]);
        }
      }
      for ( ; ; )
      {
        mz_uint8 *pSrc;
        for ( ; ; )
        {
          if (((pIn_buf_end - pIn_buf_cur) < 4) || ((pOut_buf_end - pOut_buf_cur) < 2))
          {
            TINFL_HUFF_DECODE(23, counter, &r->m_tables[0]);
            if (counter >= 256)
              break;
            while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(24, TINFL_STATUS_HAS_MORE_OUTPUT); }
            *pOut_buf_cur++ = (mz_uint8)counter;
          }
          else
          {
            int sym2; mz_uint code_len;
#if TINFL_USE_64BIT_BITBUF
            if (num_bits < 30) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE32(pIn_buf_cur)) << num_bits); pIn_buf_cur += 4; num_bits += 32; }
#else
            if (num_bits < 15) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits); pIn_buf_cur += 2; num_bits += 16; }
#endif
            if ((sym2 = r->m_tables[0].m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0)
              code_len = sym2 >> 9;
            else
            {
              code_len = TINFL_FAST_LOOKUP_BITS; do { sym2 = r->m_tables[0].m_tree[~sym2 + ((bit_buf >> code_len++) & 1)]; } while (sym2 < 0);
            }
            counter = sym2; bit_buf >>= code_len; num_bits -= code_len;
            if (counter & 256)
              break;

#if !TINFL_USE_64BIT_BITBUF
            if (num_bits < 15) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits); pIn_buf_cur += 2; num_bits += 16; }
#endif
            if ((sym2 = r->m_tables[0].m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0)
              code_len = sym2 >> 9;
            else
            {
              code_len = TINFL_FAST_LOOKUP_BITS; do { sym2 = r->m_tables[0].m_tree[~sym2 + ((bit_buf >> code_len++) & 1)]; } while (sym2 < 0);
            }
            bit_buf >>= code_len; num_bits -= code_len;

            pOut_buf_cur[0] = (mz_uint8)counter;
            if (sym2 & 256)
            {
              pOut_buf_cur++;
              counter = sym2;
              break;
            }
            pOut_buf_cur[1] = (mz_uint8)sym2;
            pOut_buf_cur += 2;
          }
        }
        if ((counter &= 511) == 256) break;

        num_extra = s_length_extra[counter - 257]; counter = s_length_base[counter - 257];
        if (num_extra) { mz_uint extra_bits; TINFL_GET_BITS(25, extra_bits, num_extra); counter += extra_bits; }

        TINFL_HUFF_DECODE(26, dist, &r->m_tables[1]);
        num_extra = s_dist_extra[dist]; dist = s_dist_base[dist];
        if (num_extra) { mz_uint extra_bits; TINFL_GET_BITS(27, extra_bits, num_extra); dist += extra_bits; }

        dist_from_out_buf_start = pOut_buf_cur - pOut_buf_start;
        if ((dist > dist_from_out_buf_start) && (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF))
        {
          TINFL_CR_RETURN_FOREVER(37, TINFL_STATUS_FAILED);
        }

        pSrc = pOut_buf_start + ((dist_from_out_buf_start - dist) & out_buf_size_mask);

        if ((MZ_MAX(pOut_buf_cur, pSrc) + counter) > pOut_buf_end)
        {
          while (counter--)
          {
            while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(53, TINFL_STATUS_HAS_MORE_OUTPUT); }
            *pOut_buf_cur++ = pOut_buf_start[(dist_from_out_buf_start++ - dist) & out_buf_size_mask];
          }
          continue;
        }
#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
        else if ((counter >= 9) && (counter <= dist))
        {
          const mz_uint8 *pSrc_end = pSrc + (counter & ~7);
          do
          {
            ((mz_uint32 *)pOut_buf_cur)[0] = ((const mz_uint32 *)pSrc)[0];
            ((mz_uint32 *)pOut_buf_cur)[1] = ((const mz_uint32 *)pSrc)[1];
            pOut_buf_cur += 8;
          } while ((pSrc += 8) < pSrc_end);
          if ((counter &= 7) < 3)
          {
            if (counter)
            {
              pOut_buf_cur[0] = pSrc[0];
              if (counter > 1)
                pOut_buf_cur[1] = pSrc[1];
              pOut_buf_cur += counter;
            }
            continue;
          }
        }
#endif
        do
        {
          pOut_buf_cur[0] = pSrc[0];
          pOut_buf_cur[1] = pSrc[1];
          pOut_buf_cur[2] = pSrc[2];
          pOut_buf_cur += 3; pSrc += 3;
        } while ((int)(counter -= 3) > 2);
        if ((int)counter > 0)
        {
          pOut_buf_cur[0] = pSrc[0];
          if ((int)counter > 1)
            pOut_buf_cur[1] = pSrc[1];
          pOut_buf_cur += counter;
        }
      }
    }
  } while (!(r->m_final & 1));
  if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER)
  {
    TINFL_SKIP_BITS(32, num_bits & 7); for (counter = 0; counter < 4; ++counter) { mz_uint s; if (num_bits) TINFL_GET_BITS(41, s, 8); else TINFL_GET_BYTE(42, s); r->m_z_adler32 = (r->m_z_adler32 << 8) | s; }
  }
  TINFL_CR_RETURN_FOREVER(34, TINFL_STATUS_DONE);
  TINFL_CR_FINISH

common_exit:
  r->m_num_bits = num_bits; r->m_bit_buf = bit_buf; r->m_dist = dist; r->m_counter = counter; r->m_num_extra = num_extra; r->m_dist_from_out_buf_start = dist_from_out_buf_start;
  *pIn_buf_size = pIn_buf_cur - pIn_buf_next; *pOut_buf_size = pOut_buf_cur - pOut_buf_next;
  if ((decomp_flags & (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32)) && (status >= 0))
  {
    const mz_uint8 *ptr = pOut_buf_next; size_t buf_len = *pOut_buf_size;
    mz_uint32 i, s1 = r->m_check_adler32 & 0xffff, s2 = r->m_check_adler32 >> 16; size_t block_len = buf_len % 5552;
    while (buf_len)
    {
      for (i = 0; i + 7 < block_len; i += 8, ptr += 8)
      {
        s1 += ptr[0], s2 += s1; s1 += ptr[1], s2 += s1; s1 += ptr[2], s2 += s1; s1 += ptr[3], s2 += s1;
        s1 += ptr[4], s2 += s1; s1 += ptr[5], s2 += s1; s1 += ptr[6], s2 += s1; s1 += ptr[7], s2 += s1;
      }
      for ( ; i < block_len; ++i) s1 += *ptr++, s2 += s1;
      s1 %= 65521U, s2 %= 65521U; buf_len -= block_len; block_len = 5552;
    }
    r->m_check_adler32 = (s2 << 16) + s1; if ((status == TINFL_STATUS_DONE) && (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) && (r->m_check_adler32 != r->m_z_adler32)) status = TINFL_STATUS_ADLER32_MISMATCH;
  }
  return status;
}

// Higher level helper functions.
void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags)
{
  tinfl_decompressor decomp; void *pBuf = NULL, *pNew_buf; size_t src_buf_ofs = 0, out_buf_capacity = 0;
  *pOut_len = 0;
  tinfl_init(&decomp);
  for ( ; ; )
  {
    size_t src_buf_size = src_buf_len - src_buf_ofs, dst_buf_size = out_buf_capacity - *pOut_len, new_out_buf_capacity;
    tinfl_status status = tinfl_decompress(&decomp, (const mz_uint8*)pSrc_buf + src_buf_ofs, &src_buf_size, (mz_uint8*)pBuf, pBuf ? (mz_uint8*)pBuf + *pOut_len : NULL, &dst_buf_size,
      (flags & ~TINFL_FLAG_HAS_MORE_INPUT) | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
    if ((status < 0) || (status == TINFL_STATUS_NEEDS_MORE_INPUT))
    {
      MZ_FREE(pBuf); *pOut_len = 0; return NULL;
    }
    src_buf_ofs += src_buf_size;
    *pOut_len += dst_buf_size;
    if (status == TINFL_STATUS_DONE) break;
    new_out_buf_capacity = out_buf_capacity * 2; if (new_out_buf_capacity < 128) new_out_buf_capacity = 128;
    pNew_buf = MZ_REALLOC(pBuf, new_out_buf_capacity);
    if (!pNew_buf)
    {
      MZ_FREE(pBuf); *pOut_len = 0; return NULL;
    }
    pBuf = pNew_buf; out_buf_capacity = new_out_buf_capacity;
  }
  return pBuf;
}

size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags)
{
  tinfl_decompressor decomp; tinfl_status status; tinfl_init(&decomp);
  status = tinfl_decompress(&decomp, (const mz_uint8*)pSrc_buf, &src_buf_len, (mz_uint8*)pOut_buf, (mz_uint8*)pOut_buf, &out_buf_len, (flags & ~TINFL_FLAG_HAS_MORE_INPUT) | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
  return (status != TINFL_STATUS_DONE) ? TINFL_DECOMPRESS_MEM_TO_MEM_FAILED : out_buf_len;
}

int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size, tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags)
{
  int result = 0;
  tinfl_decompressor decomp;
  mz_uint8 *pDict = (mz_uint8*)MZ_MALLOC(TINFL_LZ_DICT_SIZE); size_t in_buf_ofs = 0, dict_ofs = 0;
  if (!pDict)
    return TINFL_STATUS_FAILED;
  tinfl_init(&decomp);
  for ( ; ; )
  {
    size_t in_buf_size = *pIn_buf_size - in_buf_ofs, dst_buf_size = TINFL_LZ_DICT_SIZE - dict_ofs;
    tinfl_status status = tinfl_decompress(&decomp, (const mz_uint8*)pIn_buf + in_buf_ofs, &in_buf_size, pDict, pDict + dict_ofs, &dst_buf_size,
      (flags & ~(TINFL_FLAG_HAS_MORE_INPUT | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)));
    in_buf_ofs += in_buf_size;
    if ((dst_buf_size) && (!(*pPut_buf_func)(pDict + dict_ofs, (int)dst_buf_size, pPut_buf_user)))
      break;
    if (status != TINFL_STATUS_HAS_MORE_OUTPUT)
    {
      result = (status == TINFL_STATUS_DONE);
      break;
    }
    dict_ofs = (dict_ofs + dst_buf_size) & (TINFL_LZ_DICT_SIZE - 1);
  }
  MZ_FREE(pDict);
  *pIn_buf_size = in_buf_ofs;
  return result;
}

// ------------------- Low-level Compression (independent from all decompression API's)

// Purposely making these tables static for faster init and thread safety.
static const mz_uint16 s_tdefl_len_sym[256] = {
  257,258,259,260,261,262,263,264,265,265,266,266,267,267,268,268,269,269,269,269,270,270,270,270,271,271,271,271,272,272,272,272,
  273,273,273,273,273,273,273,273,274,274,274,274,274,274,274,274,275,275,275,275,275,275,275,275,276,276,276,276,276,276,276,276,
  277,277,277,277,277,277,277,277,277,277,277,277,277,277,277,277,278,278,278,278,278,278,278,278,278,278,278,278,278,278,278,278,
  279,279,279,279,279,279,279,279,279,279,279,279,279,279,279,279,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,280,
  281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,281,
  282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,282,
  283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,283,
  284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,284,285 };

static const mz_uint8 s_tdefl_len_extra[256] = {
  0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
  4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
  5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
  5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,0 };

static const mz_uint8 s_tdefl_small_dist_sym[512] = {
  0,1,2,3,4,4,5,5,6,6,6,6,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,
  11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,
  13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,14,
  14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,
  14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,
  15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,
  16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,
  16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,
  16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,17,17,17,17,17,17,17,17,17,17,17,17,17,17,
  17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,
  17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,
  17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17 };

static const mz_uint8 s_tdefl_small_dist_extra[512] = {
  0,0,0,0,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,
  5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
  6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
  6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
  7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
  7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
  7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
  7,7,7,7,7,7,7,7 };

static const mz_uint8 s_tdefl_large_dist_sym[128] = {
  0,0,18,19,20,20,21,21,22,22,22,22,23,23,23,23,24,24,24,24,24,24,24,24,25,25,25,25,25,25,25,25,26,26,26,26,26,26,26,26,26,26,26,26,
  26,26,26,26,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,
  28,28,28,28,28,28,28,28,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29 };

static const mz_uint8 s_tdefl_large_dist_extra[128] = {
  0,0,8,8,9,9,9,9,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,
  12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,
  13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13 };

// Radix sorts tdefl_sym_freq[] array by 16-bit key m_key. Returns ptr to sorted values.
typedef struct { mz_uint16 m_key, m_sym_index; } tdefl_sym_freq;
static tdefl_sym_freq* tdefl_radix_sort_syms(mz_uint num_syms, tdefl_sym_freq* pSyms0, tdefl_sym_freq* pSyms1)
{
  mz_uint32 total_passes = 2, pass_shift, pass, i, hist[256 * 2]; tdefl_sym_freq* pCur_syms = pSyms0, *pNew_syms = pSyms1; MZ_CLEAR_OBJ(hist);
  for (i = 0; i < num_syms; i++) { mz_uint freq = pSyms0[i].m_key; hist[freq & 0xFF]++; hist[256 + ((freq >> 8) & 0xFF)]++; }
  while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) total_passes--;
  for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8)
  {
    const mz_uint32* pHist = &hist[pass << 8];
    mz_uint offsets[256], cur_ofs = 0;
    for (i = 0; i < 256; i++) { offsets[i] = cur_ofs; cur_ofs += pHist[i]; }
    for (i = 0; i < num_syms; i++) pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i];
    { tdefl_sym_freq* t = pCur_syms; pCur_syms = pNew_syms; pNew_syms = t; }
  }
  return pCur_syms;
}

// tdefl_calculate_minimum_redundancy() originally written by: Alistair Moffat, alistair@cs.mu.oz.au, Jyrki Katajainen, jyrki@diku.dk, November 1996.
static void tdefl_calculate_minimum_redundancy(tdefl_sym_freq *A, int n)
{
  int root, leaf, next, avbl, used, dpth;
  if (n==0) return; else if (n==1) { A[0].m_key = 1; return; }
  A[0].m_key += A[1].m_key; root = 0; leaf = 2;
  for (next=1; next < n-1; next++)
  {
    if (leaf>=n || A[root].m_key<A[leaf].m_key) { A[next].m_key = A[root].m_key; A[root++].m_key = (mz_uint16)next; } else A[next].m_key = A[leaf++].m_key;
    if (leaf>=n || (root<next && A[root].m_key<A[leaf].m_key)) { A[next].m_key = (mz_uint16)(A[next].m_key + A[root].m_key); A[root++].m_key = (mz_uint16)next; } else A[next].m_key = (mz_uint16)(A[next].m_key + A[leaf++].m_key);
  }
  A[n-2].m_key = 0; for (next=n-3; next>=0; next--) A[next].m_key = A[A[next].m_key].m_key+1;
  avbl = 1; used = dpth = 0; root = n-2; next = n-1;
  while (avbl>0)
  {
    while (root>=0 && (int)A[root].m_key==dpth) { used++; root--; }
    while (avbl>used) { A[next--].m_key = (mz_uint16)(dpth); avbl--; }
    avbl = 2*used; dpth++; used = 0;
  }
}

// Limits canonical Huffman code table's max code size.
enum { TDEFL_MAX_SUPPORTED_HUFF_CODESIZE = 32 };
static void tdefl_huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size)
{
  int i; mz_uint32 total = 0; if (code_list_len <= 1) return;
  for (i = max_code_size + 1; i <= TDEFL_MAX_SUPPORTED_HUFF_CODESIZE; i++) pNum_codes[max_code_size] += pNum_codes[i];
  for (i = max_code_size; i > 0; i--) total += (((mz_uint32)pNum_codes[i]) << (max_code_size - i));
  while (total != (1UL << max_code_size))
  {
    pNum_codes[max_code_size]--;
    for (i = max_code_size - 1; i > 0; i--) if (pNum_codes[i]) { pNum_codes[i]--; pNum_codes[i + 1] += 2; break; }
    total--;
  }
}

static void tdefl_optimize_huffman_table(tdefl_compressor *d, int table_num, int table_len, int code_size_limit, int static_table)
{
  int i, j, l, num_codes[1 + TDEFL_MAX_SUPPORTED_HUFF_CODESIZE]; mz_uint next_code[TDEFL_MAX_SUPPORTED_HUFF_CODESIZE + 1]; MZ_CLEAR_OBJ(num_codes);
  if (static_table)
  {
    for (i = 0; i < table_len; i++) num_codes[d->m_huff_code_sizes[table_num][i]]++;
  }
  else
  {
    tdefl_sym_freq syms0[TDEFL_MAX_HUFF_SYMBOLS], syms1[TDEFL_MAX_HUFF_SYMBOLS], *pSyms;
    int num_used_syms = 0;
    const mz_uint16 *pSym_count = &d->m_huff_count[table_num][0];
    for (i = 0; i < table_len; i++) if (pSym_count[i]) { syms0[num_used_syms].m_key = (mz_uint16)pSym_count[i]; syms0[num_used_syms++].m_sym_index = (mz_uint16)i; }

    pSyms = tdefl_radix_sort_syms(num_used_syms, syms0, syms1); tdefl_calculate_minimum_redundancy(pSyms, num_used_syms);

    for (i = 0; i < num_used_syms; i++) num_codes[pSyms[i].m_key]++;

    tdefl_huffman_enforce_max_code_size(num_codes, num_used_syms, code_size_limit);

    MZ_CLEAR_OBJ(d->m_huff_code_sizes[table_num]); MZ_CLEAR_OBJ(d->m_huff_codes[table_num]);
    for (i = 1, j = num_used_syms; i <= code_size_limit; i++)
      for (l = num_codes[i]; l > 0; l--) d->m_huff_code_sizes[table_num][pSyms[--j].m_sym_index] = (mz_uint8)(i);
  }

  next_code[1] = 0; for (j = 0, i = 2; i <= code_size_limit; i++) next_code[i] = j = ((j + num_codes[i - 1]) << 1);

  for (i = 0; i < table_len; i++)
  {
    mz_uint rev_code = 0, code, code_size; if ((code_size = d->m_huff_code_sizes[table_num][i]) == 0) continue;
    code = next_code[code_size]++; for (l = code_size; l > 0; l--, code >>= 1) rev_code = (rev_code << 1) | (code & 1);
    d->m_huff_codes[table_num][i] = (mz_uint16)rev_code;
  }
}

#define TDEFL_PUT_BITS(b, l) do { \
  mz_uint bits = b; mz_uint len = l; MZ_ASSERT(bits <= ((1U << len) - 1U)); \
  d->m_bit_buffer |= (bits << d->m_bits_in); d->m_bits_in += len; \
  while (d->m_bits_in >= 8) { \
    if (d->m_pOutput_buf < d->m_pOutput_buf_end) \
      *d->m_pOutput_buf++ = (mz_uint8)(d->m_bit_buffer); \
      d->m_bit_buffer >>= 8; \
      d->m_bits_in -= 8; \
  } \
} MZ_MACRO_END

#define TDEFL_RLE_PREV_CODE_SIZE() { if (rle_repeat_count) { \
  if (rle_repeat_count < 3) { \
    d->m_huff_count[2][prev_code_size] = (mz_uint16)(d->m_huff_count[2][prev_code_size] + rle_repeat_count); \
    while (rle_repeat_count--) packed_code_sizes[num_packed_code_sizes++] = prev_code_size; \
  } else { \
    d->m_huff_count[2][16] = (mz_uint16)(d->m_huff_count[2][16] + 1); packed_code_sizes[num_packed_code_sizes++] = 16; packed_code_sizes[num_packed_code_sizes++] = (mz_uint8)(rle_repeat_count - 3); \
} rle_repeat_count = 0; } }

#define TDEFL_RLE_ZERO_CODE_SIZE() { if (rle_z_count) { \
  if (rle_z_count < 3) { \
    d->m_huff_count[2][0] = (mz_uint16)(d->m_huff_count[2][0] + rle_z_count); while (rle_z_count--) packed_code_sizes[num_packed_code_sizes++] = 0; \
  } else if (rle_z_count <= 10) { \
    d->m_huff_count[2][17] = (mz_uint16)(d->m_huff_count[2][17] + 1); packed_code_sizes[num_packed_code_sizes++] = 17; packed_code_sizes[num_packed_code_sizes++] = (mz_uint8)(rle_z_count - 3); \
  } else { \
    d->m_huff_count[2][18] = (mz_uint16)(d->m_huff_count[2][18] + 1); packed_code_sizes[num_packed_code_sizes++] = 18; packed_code_sizes[num_packed_code_sizes++] = (mz_uint8)(rle_z_count - 11); \
} rle_z_count = 0; } }

static mz_uint8 s_tdefl_packed_code_size_syms_swizzle[] = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };

static void tdefl_start_dynamic_block(tdefl_compressor *d)
{
  int num_lit_codes, num_dist_codes, num_bit_lengths; mz_uint i, total_code_sizes_to_pack, num_packed_code_sizes, rle_z_count, rle_repeat_count, packed_code_sizes_index;
  mz_uint8 code_sizes_to_pack[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1], packed_code_sizes[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1], prev_code_size = 0xFF;

  d->m_huff_count[0][256] = 1;

  tdefl_optimize_huffman_table(d, 0, TDEFL_MAX_HUFF_SYMBOLS_0, 15, MZ_FALSE);
  tdefl_optimize_huffman_table(d, 1, TDEFL_MAX_HUFF_SYMBOLS_1, 15, MZ_FALSE);

  for (num_lit_codes = 286; num_lit_codes > 257; num_lit_codes--) if (d->m_huff_code_sizes[0][num_lit_codes - 1]) break;
  for (num_dist_codes = 30; num_dist_codes > 1; num_dist_codes--) if (d->m_huff_code_sizes[1][num_dist_codes - 1]) break;

  memcpy(code_sizes_to_pack, &d->m_huff_code_sizes[0][0], num_lit_codes);
  memcpy(code_sizes_to_pack + num_lit_codes, &d->m_huff_code_sizes[1][0], num_dist_codes);
  total_code_sizes_to_pack = num_lit_codes + num_dist_codes; num_packed_code_sizes = 0; rle_z_count = 0; rle_repeat_count = 0;

  memset(&d->m_huff_count[2][0], 0, sizeof(d->m_huff_count[2][0]) * TDEFL_MAX_HUFF_SYMBOLS_2);
  for (i = 0; i < total_code_sizes_to_pack; i++)
  {
    mz_uint8 code_size = code_sizes_to_pack[i];
    if (!code_size)
    {
      TDEFL_RLE_PREV_CODE_SIZE();
      if (++rle_z_count == 138) { TDEFL_RLE_ZERO_CODE_SIZE(); }
    }
    else
    {
      TDEFL_RLE_ZERO_CODE_SIZE();
      if (code_size != prev_code_size)
      {
        TDEFL_RLE_PREV_CODE_SIZE();
        d->m_huff_count[2][code_size] = (mz_uint16)(d->m_huff_count[2][code_size] + 1); packed_code_sizes[num_packed_code_sizes++] = code_size;
      }
      else if (++rle_repeat_count == 6)
      {
        TDEFL_RLE_PREV_CODE_SIZE();
      }
    }
    prev_code_size = code_size;
  }
  if (rle_repeat_count) { TDEFL_RLE_PREV_CODE_SIZE(); } else { TDEFL_RLE_ZERO_CODE_SIZE(); }

  tdefl_optimize_huffman_table(d, 2, TDEFL_MAX_HUFF_SYMBOLS_2, 7, MZ_FALSE);

  TDEFL_PUT_BITS(2, 2);

  TDEFL_PUT_BITS(num_lit_codes - 257, 5);
  TDEFL_PUT_BITS(num_dist_codes - 1, 5);

  for (num_bit_lengths = 18; num_bit_lengths >= 0; num_bit_lengths--) if (d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[num_bit_lengths]]) break;
  num_bit_lengths = MZ_MAX(4, (num_bit_lengths + 1)); TDEFL_PUT_BITS(num_bit_lengths - 4, 4);
  for (i = 0; (int)i < num_bit_lengths; i++) TDEFL_PUT_BITS(d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[i]], 3);

  for (packed_code_sizes_index = 0; packed_code_sizes_index < num_packed_code_sizes; )
  {
    mz_uint code = packed_code_sizes[packed_code_sizes_index++]; MZ_ASSERT(code < TDEFL_MAX_HUFF_SYMBOLS_2);
    TDEFL_PUT_BITS(d->m_huff_codes[2][code], d->m_huff_code_sizes[2][code]);
    if (code >= 16) TDEFL_PUT_BITS(packed_code_sizes[packed_code_sizes_index++], "\02\03\07"[code - 16]);
  }
}

static void tdefl_start_static_block(tdefl_compressor *d)
{
  mz_uint i;
  mz_uint8 *p = &d->m_huff_code_sizes[0][0];

  for (i = 0; i <= 143; ++i) *p++ = 8;
  for ( ; i <= 255; ++i) *p++ = 9;
  for ( ; i <= 279; ++i) *p++ = 7;
  for ( ; i <= 287; ++i) *p++ = 8;

  memset(d->m_huff_code_sizes[1], 5, 32);

  tdefl_optimize_huffman_table(d, 0, 288, 15, MZ_TRUE);
  tdefl_optimize_huffman_table(d, 1, 32, 15, MZ_TRUE);

  TDEFL_PUT_BITS(1, 2);
}

static const mz_uint mz_bitmasks[17] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF };

#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && MINIZ_HAS_64BIT_REGISTERS
static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d)
{
  mz_uint flags;
  mz_uint8 *pLZ_codes;
  mz_uint8 *pOutput_buf = d->m_pOutput_buf;
  mz_uint8 *pLZ_code_buf_end = d->m_pLZ_code_buf;
  mz_uint64 bit_buffer = d->m_bit_buffer;
  mz_uint bits_in = d->m_bits_in;

#define TDEFL_PUT_BITS_FAST(b, l) { bit_buffer |= (((mz_uint64)(b)) << bits_in); bits_in += (l); }

  flags = 1;
  for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < pLZ_code_buf_end; flags >>= 1)
  {
    if (flags == 1)
      flags = *pLZ_codes++ | 0x100;

    if (flags & 1)
    {
      mz_uint s0, s1, n0, n1, sym, num_extra_bits;
      mz_uint match_len = pLZ_codes[0], match_dist = *(const mz_uint16 *)(pLZ_codes + 1); pLZ_codes += 3;

      MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
      TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][s_tdefl_len_sym[match_len]], d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
      TDEFL_PUT_BITS_FAST(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]], s_tdefl_len_extra[match_len]);

      // This sequence coaxes MSVC into using cmov's vs. jmp's.
      s0 = s_tdefl_small_dist_sym[match_dist & 511];
      n0 = s_tdefl_small_dist_extra[match_dist & 511];
      s1 = s_tdefl_large_dist_sym[match_dist >> 8];
      n1 = s_tdefl_large_dist_extra[match_dist >> 8];
      sym = (match_dist < 512) ? s0 : s1;
      num_extra_bits = (match_dist < 512) ? n0 : n1;

      MZ_ASSERT(d->m_huff_code_sizes[1][sym]);
      TDEFL_PUT_BITS_FAST(d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym]);
      TDEFL_PUT_BITS_FAST(match_dist & mz_bitmasks[num_extra_bits], num_extra_bits);
    }
    else
    {
      mz_uint lit = *pLZ_codes++;
      MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
      TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]);

      if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end))
      {
        flags >>= 1;
        lit = *pLZ_codes++;
        MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
        TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]);

        if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end))
        {
          flags >>= 1;
          lit = *pLZ_codes++;
          MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
          TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]);
        }
      }
    }

    if (pOutput_buf >= d->m_pOutput_buf_end)
      return MZ_FALSE;

    *(mz_uint64*)pOutput_buf = bit_buffer;
    pOutput_buf += (bits_in >> 3);
    bit_buffer >>= (bits_in & ~7);
    bits_in &= 7;
  }

#undef TDEFL_PUT_BITS_FAST

  d->m_pOutput_buf = pOutput_buf;
  d->m_bits_in = 0;
  d->m_bit_buffer = 0;

  while (bits_in)
  {
    mz_uint32 n = MZ_MIN(bits_in, 16);
    TDEFL_PUT_BITS((mz_uint)bit_buffer & mz_bitmasks[n], n);
    bit_buffer >>= n;
    bits_in -= n;
  }

  TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]);

  return (d->m_pOutput_buf < d->m_pOutput_buf_end);
}
#else
static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d)
{
  mz_uint flags;
  mz_uint8 *pLZ_codes;

  flags = 1;
  for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < d->m_pLZ_code_buf; flags >>= 1)
  {
    if (flags == 1)
      flags = *pLZ_codes++ | 0x100;
    if (flags & 1)
    {
      mz_uint sym, num_extra_bits;
      mz_uint match_len = pLZ_codes[0], match_dist = (pLZ_codes[1] | (pLZ_codes[2] << 8)); pLZ_codes += 3;

      MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
      TDEFL_PUT_BITS(d->m_huff_codes[0][s_tdefl_len_sym[match_len]], d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
      TDEFL_PUT_BITS(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]], s_tdefl_len_extra[match_len]);

      if (match_dist < 512)
      {
        sym = s_tdefl_small_dist_sym[match_dist]; num_extra_bits = s_tdefl_small_dist_extra[match_dist];
      }
      else
      {
        sym = s_tdefl_large_dist_sym[match_dist >> 8]; num_extra_bits = s_tdefl_large_dist_extra[match_dist >> 8];
      }
      MZ_ASSERT(d->m_huff_code_sizes[1][sym]);
      TDEFL_PUT_BITS(d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym]);
      TDEFL_PUT_BITS(match_dist & mz_bitmasks[num_extra_bits], num_extra_bits);
    }
    else
    {
      mz_uint lit = *pLZ_codes++;
      MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
      TDEFL_PUT_BITS(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]);
    }
  }

  TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]);

  return (d->m_pOutput_buf < d->m_pOutput_buf_end);
}
#endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && MINIZ_HAS_64BIT_REGISTERS

static mz_bool tdefl_compress_block(tdefl_compressor *d, mz_bool static_block)
{
  if (static_block)
    tdefl_start_static_block(d);
  else
    tdefl_start_dynamic_block(d);
  return tdefl_compress_lz_codes(d);
}

static int tdefl_flush_block(tdefl_compressor *d, int flush)
{
  mz_uint saved_bit_buf, saved_bits_in;
  mz_uint8 *pSaved_output_buf;
  mz_bool comp_block_succeeded = MZ_FALSE;
  int n, use_raw_block = ((d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS) != 0) && (d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size;
  mz_uint8 *pOutput_buf_start = ((d->m_pPut_buf_func == NULL) && ((*d->m_pOut_buf_size - d->m_out_buf_ofs) >= TDEFL_OUT_BUF_SIZE)) ? ((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs) : d->m_output_buf;

  d->m_pOutput_buf = pOutput_buf_start;
  d->m_pOutput_buf_end = d->m_pOutput_buf + TDEFL_OUT_BUF_SIZE - 16;

  MZ_ASSERT(!d->m_output_flush_remaining);
  d->m_output_flush_ofs = 0;
  d->m_output_flush_remaining = 0;

  *d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> d->m_num_flags_left);
  d->m_pLZ_code_buf -= (d->m_num_flags_left == 8);

  if ((d->m_flags & TDEFL_WRITE_ZLIB_HEADER) && (!d->m_block_index))
  {
    TDEFL_PUT_BITS(0x78, 8); TDEFL_PUT_BITS(0x01, 8);
  }

  TDEFL_PUT_BITS(flush == TDEFL_FINISH, 1);

  pSaved_output_buf = d->m_pOutput_buf; saved_bit_buf = d->m_bit_buffer; saved_bits_in = d->m_bits_in;

  if (!use_raw_block)
    comp_block_succeeded = tdefl_compress_block(d, (d->m_flags & TDEFL_FORCE_ALL_STATIC_BLOCKS) || (d->m_total_lz_bytes < 48));

  // If the block gets expanded, forget the current contents of the output buffer and send a raw block instead.
  if ( ((use_raw_block) || ((d->m_total_lz_bytes) && ((d->m_pOutput_buf - pSaved_output_buf + 1U) >= d->m_total_lz_bytes))) &&
       ((d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size) )
  {
    mz_uint i; d->m_pOutput_buf = pSaved_output_buf; d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in;
    TDEFL_PUT_BITS(0, 2);
    if (d->m_bits_in) { TDEFL_PUT_BITS(0, 8 - d->m_bits_in); }
    for (i = 2; i; --i, d->m_total_lz_bytes ^= 0xFFFF)
    {
      TDEFL_PUT_BITS(d->m_total_lz_bytes & 0xFFFF, 16);
    }
    for (i = 0; i < d->m_total_lz_bytes; ++i)
    {
      TDEFL_PUT_BITS(d->m_dict[(d->m_lz_code_buf_dict_pos + i) & TDEFL_LZ_DICT_SIZE_MASK], 8);
    }
  }
  // Check for the extremely unlikely (if not impossible) case of the compressed block not fitting into the output buffer when using dynamic codes.
  else if (!comp_block_succeeded)
  {
    d->m_pOutput_buf = pSaved_output_buf; d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in;
    tdefl_compress_block(d, MZ_TRUE);
  }

  if (flush)
  {
    if (flush == TDEFL_FINISH)
    {
      if (d->m_bits_in) { TDEFL_PUT_BITS(0, 8 - d->m_bits_in); }
      if (d->m_flags & TDEFL_WRITE_ZLIB_HEADER) { mz_uint i, a = d->m_adler32; for (i = 0; i < 4; i++) { TDEFL_PUT_BITS((a >> 24) & 0xFF, 8); a <<= 8; } }
    }
    else
    {
      mz_uint i, z = 0; TDEFL_PUT_BITS(0, 3); if (d->m_bits_in) { TDEFL_PUT_BITS(0, 8 - d->m_bits_in); } for (i = 2; i; --i, z ^= 0xFFFF) { TDEFL_PUT_BITS(z & 0xFFFF, 16); }
    }
  }

  MZ_ASSERT(d->m_pOutput_buf < d->m_pOutput_buf_end);

  memset(&d->m_huff_count[0][0], 0, sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0);
  memset(&d->m_huff_count[1][0], 0, sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1);

  d->m_pLZ_code_buf = d->m_lz_code_buf + 1; d->m_pLZ_flags = d->m_lz_code_buf; d->m_num_flags_left = 8; d->m_lz_code_buf_dict_pos += d->m_total_lz_bytes; d->m_total_lz_bytes = 0; d->m_block_index++;

  if ((n = (int)(d->m_pOutput_buf - pOutput_buf_start)) != 0)
  {
    if (d->m_pPut_buf_func)
    {
      *d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf;
      if (!(*d->m_pPut_buf_func)(d->m_output_buf, n, d->m_pPut_buf_user))
        return (d->m_prev_return_status = TDEFL_STATUS_PUT_BUF_FAILED);
    }
    else if (pOutput_buf_start == d->m_output_buf)
    {
      int bytes_to_copy = (int)MZ_MIN((size_t)n, (size_t)(*d->m_pOut_buf_size - d->m_out_buf_ofs));
      memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf, bytes_to_copy);
      d->m_out_buf_ofs += bytes_to_copy;
      if ((n -= bytes_to_copy) != 0)
      {
        d->m_output_flush_ofs = bytes_to_copy;
        d->m_output_flush_remaining = n;
      }
    }
    else
    {
      d->m_out_buf_ofs += n;
    }
  }

  return d->m_output_flush_remaining;
}

#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
#define TDEFL_READ_UNALIGNED_WORD(p) *(const mz_uint16*)(p)
static MZ_FORCEINLINE void tdefl_find_match(tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist, mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len)
{
  mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK, match_len = *pMatch_len, probe_pos = pos, next_probe_pos, probe_len;
  mz_uint num_probes_left = d->m_max_probes[match_len >= 32];
  const mz_uint16 *s = (const mz_uint16*)(d->m_dict + pos), *p, *q;
  mz_uint16 c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]), s01 = TDEFL_READ_UNALIGNED_WORD(s);
  MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN); if (max_match_len <= match_len) return;
  for ( ; ; )
  {
    for ( ; ; )
    {
      if (--num_probes_left == 0) return;
      #define TDEFL_PROBE \
        next_probe_pos = d->m_next[probe_pos]; \
        if ((!next_probe_pos) || ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) return; \
        probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \
        if (TDEFL_READ_UNALIGNED_WORD(&d->m_dict[probe_pos + match_len - 1]) == c01) break;
      TDEFL_PROBE; TDEFL_PROBE; TDEFL_PROBE;
    }
    if (!dist) break; q = (const mz_uint16*)(d->m_dict + probe_pos); if (TDEFL_READ_UNALIGNED_WORD(q) != s01) continue; p = s; probe_len = 32;
    do { } while ( (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) &&
                   (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (--probe_len > 0) );
    if (!probe_len)
    {
      *pMatch_dist = dist; *pMatch_len = MZ_MIN(max_match_len, TDEFL_MAX_MATCH_LEN); break;
    }
    else if ((probe_len = ((mz_uint)(p - s) * 2) + (mz_uint)(*(const mz_uint8*)p == *(const mz_uint8*)q)) > match_len)
    {
      *pMatch_dist = dist; if ((*pMatch_len = match_len = MZ_MIN(max_match_len, probe_len)) == max_match_len) break;
      c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]);
    }
  }
}
#else
static MZ_FORCEINLINE void tdefl_find_match(tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist, mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len)
{
  mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK, match_len = *pMatch_len, probe_pos = pos, next_probe_pos, probe_len;
  mz_uint num_probes_left = d->m_max_probes[match_len >= 32];
  const mz_uint8 *s = d->m_dict + pos, *p, *q;
  mz_uint8 c0 = d->m_dict[pos + match_len], c1 = d->m_dict[pos + match_len - 1];
  MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN); if (max_match_len <= match_len) return;
  for ( ; ; )
  {
    for ( ; ; )
    {
      if (--num_probes_left == 0) return;
      #define TDEFL_PROBE \
        next_probe_pos = d->m_next[probe_pos]; \
        if ((!next_probe_pos) || ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) return; \
        probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \
        if ((d->m_dict[probe_pos + match_len] == c0) && (d->m_dict[probe_pos + match_len - 1] == c1)) break;
      TDEFL_PROBE; TDEFL_PROBE; TDEFL_PROBE;
    }
    if (!dist) break; p = s; q = d->m_dict + probe_pos; for (probe_len = 0; probe_len < max_match_len; probe_len++) if (*p++ != *q++) break;
    if (probe_len > match_len)
    {
      *pMatch_dist = dist; if ((*pMatch_len = match_len = probe_len) == max_match_len) return;
      c0 = d->m_dict[pos + match_len]; c1 = d->m_dict[pos + match_len - 1];
    }
  }
}
#endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES

#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
static mz_bool tdefl_compress_fast(tdefl_compressor *d)
{
  // Faster, minimally featured LZRW1-style match+parse loop with better register utilization. Intended for applications where raw throughput is valued more highly than ratio.
  mz_uint lookahead_pos = d->m_lookahead_pos, lookahead_size = d->m_lookahead_size, dict_size = d->m_dict_size, total_lz_bytes = d->m_total_lz_bytes, num_flags_left = d->m_num_flags_left;
  mz_uint8 *pLZ_code_buf = d->m_pLZ_code_buf, *pLZ_flags = d->m_pLZ_flags;
  mz_uint cur_pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK;

  while ((d->m_src_buf_left) || ((d->m_flush) && (lookahead_size)))
  {
    const mz_uint TDEFL_COMP_FAST_LOOKAHEAD_SIZE = 4096;
    mz_uint dst_pos = (lookahead_pos + lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK;
    mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(d->m_src_buf_left, TDEFL_COMP_FAST_LOOKAHEAD_SIZE - lookahead_size);
    d->m_src_buf_left -= num_bytes_to_process;
    lookahead_size += num_bytes_to_process;

    while (num_bytes_to_process)
    {
      mz_uint32 n = MZ_MIN(TDEFL_LZ_DICT_SIZE - dst_pos, num_bytes_to_process);
      memcpy(d->m_dict + dst_pos, d->m_pSrc, n);
      if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1))
        memcpy(d->m_dict + TDEFL_LZ_DICT_SIZE + dst_pos, d->m_pSrc, MZ_MIN(n, (TDEFL_MAX_MATCH_LEN - 1) - dst_pos));
      d->m_pSrc += n;
      dst_pos = (dst_pos + n) & TDEFL_LZ_DICT_SIZE_MASK;
      num_bytes_to_process -= n;
    }

    dict_size = MZ_MIN(TDEFL_LZ_DICT_SIZE - lookahead_size, dict_size);
    if ((!d->m_flush) && (lookahead_size < TDEFL_COMP_FAST_LOOKAHEAD_SIZE)) break;

    while (lookahead_size >= 4)
    {
      mz_uint cur_match_dist, cur_match_len = 1;
      mz_uint8 *pCur_dict = d->m_dict + cur_pos;
      mz_uint first_trigram = (*(const mz_uint32 *)pCur_dict) & 0xFFFFFF;
      mz_uint hash = (first_trigram ^ (first_trigram >> (24 - (TDEFL_LZ_HASH_BITS - 8)))) & TDEFL_LEVEL1_HASH_SIZE_MASK;
      mz_uint probe_pos = d->m_hash[hash];
      d->m_hash[hash] = (mz_uint16)lookahead_pos;

      if (((cur_match_dist = (mz_uint16)(lookahead_pos - probe_pos)) <= dict_size) && ((*(const mz_uint32 *)(d->m_dict + (probe_pos &= TDEFL_LZ_DICT_SIZE_MASK)) & 0xFFFFFF) == first_trigram))
      {
        const mz_uint16 *p = (const mz_uint16 *)pCur_dict;
        const mz_uint16 *q = (const mz_uint16 *)(d->m_dict + probe_pos);
        mz_uint32 probe_len = 32;
        do { } while ( (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) &&
          (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && (--probe_len > 0) );
        cur_match_len = ((mz_uint)(p - (const mz_uint16 *)pCur_dict) * 2) + (mz_uint)(*(const mz_uint8 *)p == *(const mz_uint8 *)q);
        if (!probe_len)
          cur_match_len = cur_match_dist ? TDEFL_MAX_MATCH_LEN : 0;

        if ((cur_match_len < TDEFL_MIN_MATCH_LEN) || ((cur_match_len == TDEFL_MIN_MATCH_LEN) && (cur_match_dist >= 8U*1024U)))
        {
          cur_match_len = 1;
          *pLZ_code_buf++ = (mz_uint8)first_trigram;
          *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);
          d->m_huff_count[0][(mz_uint8)first_trigram]++;
        }
        else
        {
          mz_uint32 s0, s1;
          cur_match_len = MZ_MIN(cur_match_len, lookahead_size);

          MZ_ASSERT((cur_match_len >= TDEFL_MIN_MATCH_LEN) && (cur_match_dist >= 1) && (cur_match_dist <= TDEFL_LZ_DICT_SIZE));

          cur_match_dist--;

          pLZ_code_buf[0] = (mz_uint8)(cur_match_len - TDEFL_MIN_MATCH_LEN);
          *(mz_uint16 *)(&pLZ_code_buf[1]) = (mz_uint16)cur_match_dist;
          pLZ_code_buf += 3;
          *pLZ_flags = (mz_uint8)((*pLZ_flags >> 1) | 0x80);

          s0 = s_tdefl_small_dist_sym[cur_match_dist & 511];
          s1 = s_tdefl_large_dist_sym[cur_match_dist >> 8];
          d->m_huff_count[1][(cur_match_dist < 512) ? s0 : s1]++;

          d->m_huff_count[0][s_tdefl_len_sym[cur_match_len - TDEFL_MIN_MATCH_LEN]]++;
        }
      }
      else
      {
        *pLZ_code_buf++ = (mz_uint8)first_trigram;
        *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);
        d->m_huff_count[0][(mz_uint8)first_trigram]++;
      }

      if (--num_flags_left == 0) { num_flags_left = 8; pLZ_flags = pLZ_code_buf++; }

      total_lz_bytes += cur_match_len;
      lookahead_pos += cur_match_len;
      dict_size = MZ_MIN(dict_size + cur_match_len, TDEFL_LZ_DICT_SIZE);
      cur_pos = (cur_pos + cur_match_len) & TDEFL_LZ_DICT_SIZE_MASK;
      MZ_ASSERT(lookahead_size >= cur_match_len);
      lookahead_size -= cur_match_len;

      if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8])
      {
        int n;
        d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size;
        d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left;
        if ((n = tdefl_flush_block(d, 0)) != 0)
          return (n < 0) ? MZ_FALSE : MZ_TRUE;
        total_lz_bytes = d->m_total_lz_bytes; pLZ_code_buf = d->m_pLZ_code_buf; pLZ_flags = d->m_pLZ_flags; num_flags_left = d->m_num_flags_left;
      }
    }

    while (lookahead_size)
    {
      mz_uint8 lit = d->m_dict[cur_pos];

      total_lz_bytes++;
      *pLZ_code_buf++ = lit;
      *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);
      if (--num_flags_left == 0) { num_flags_left = 8; pLZ_flags = pLZ_code_buf++; }

      d->m_huff_count[0][lit]++;

      lookahead_pos++;
      dict_size = MZ_MIN(dict_size + 1, TDEFL_LZ_DICT_SIZE);
      cur_pos = (cur_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK;
      lookahead_size--;

      if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8])
      {
        int n;
        d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size;
        d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left;
        if ((n = tdefl_flush_block(d, 0)) != 0)
          return (n < 0) ? MZ_FALSE : MZ_TRUE;
        total_lz_bytes = d->m_total_lz_bytes; pLZ_code_buf = d->m_pLZ_code_buf; pLZ_flags = d->m_pLZ_flags; num_flags_left = d->m_num_flags_left;
      }
    }
  }

  d->m_lookahead_pos = lookahead_pos; d->m_lookahead_size = lookahead_size; d->m_dict_size = dict_size;
  d->m_total_lz_bytes = total_lz_bytes; d->m_pLZ_code_buf = pLZ_code_buf; d->m_pLZ_flags = pLZ_flags; d->m_num_flags_left = num_flags_left;
  return MZ_TRUE;
}
#endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN

static MZ_FORCEINLINE void tdefl_record_literal(tdefl_compressor *d, mz_uint8 lit)
{
  d->m_total_lz_bytes++;
  *d->m_pLZ_code_buf++ = lit;
  *d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> 1); if (--d->m_num_flags_left == 0) { d->m_num_flags_left = 8; d->m_pLZ_flags = d->m_pLZ_code_buf++; }
  d->m_huff_count[0][lit]++;
}

static MZ_FORCEINLINE void tdefl_record_match(tdefl_compressor *d, mz_uint match_len, mz_uint match_dist)
{
  mz_uint32 s0, s1;

  MZ_ASSERT((match_len >= TDEFL_MIN_MATCH_LEN) && (match_dist >= 1) && (match_dist <= TDEFL_LZ_DICT_SIZE));

  d->m_total_lz_bytes += match_len;

  d->m_pLZ_code_buf[0] = (mz_uint8)(match_len - TDEFL_MIN_MATCH_LEN);

  match_dist -= 1;
  d->m_pLZ_code_buf[1] = (mz_uint8)(match_dist & 0xFF);
  d->m_pLZ_code_buf[2] = (mz_uint8)(match_dist >> 8); d->m_pLZ_code_buf += 3;

  *d->m_pLZ_flags = (mz_uint8)((*d->m_pLZ_flags >> 1) | 0x80); if (--d->m_num_flags_left == 0) { d->m_num_flags_left = 8; d->m_pLZ_flags = d->m_pLZ_code_buf++; }

  s0 = s_tdefl_small_dist_sym[match_dist & 511]; s1 = s_tdefl_large_dist_sym[(match_dist >> 8) & 127];
  d->m_huff_count[1][(match_dist < 512) ? s0 : s1]++;

  if (match_len >= TDEFL_MIN_MATCH_LEN) d->m_huff_count[0][s_tdefl_len_sym[match_len - TDEFL_MIN_MATCH_LEN]]++;
}

static mz_bool tdefl_compress_normal(tdefl_compressor *d)
{
  const mz_uint8 *pSrc = d->m_pSrc; size_t src_buf_left = d->m_src_buf_left;
  tdefl_flush flush = d->m_flush;

  while ((src_buf_left) || ((flush) && (d->m_lookahead_size)))
  {
    mz_uint len_to_move, cur_match_dist, cur_match_len, cur_pos;
    // Update dictionary and hash chains. Keeps the lookahead size equal to TDEFL_MAX_MATCH_LEN.
    if ((d->m_lookahead_size + d->m_dict_size) >= (TDEFL_MIN_MATCH_LEN - 1))
    {
      mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK, ins_pos = d->m_lookahead_pos + d->m_lookahead_size - 2;
      mz_uint hash = (d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] << TDEFL_LZ_HASH_SHIFT) ^ d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK];
      mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(src_buf_left, TDEFL_MAX_MATCH_LEN - d->m_lookahead_size);
      const mz_uint8 *pSrc_end = pSrc + num_bytes_to_process;
      src_buf_left -= num_bytes_to_process;
      d->m_lookahead_size += num_bytes_to_process;
      while (pSrc != pSrc_end)
      {
        mz_uint8 c = *pSrc++; d->m_dict[dst_pos] = c; if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1)) d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c;
        hash = ((hash << TDEFL_LZ_HASH_SHIFT) ^ c) & (TDEFL_LZ_HASH_SIZE - 1);
        d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash]; d->m_hash[hash] = (mz_uint16)(ins_pos);
        dst_pos = (dst_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK; ins_pos++;
      }
    }
    else
    {
      while ((src_buf_left) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN))
      {
        mz_uint8 c = *pSrc++;
        mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK;
        src_buf_left--;
        d->m_dict[dst_pos] = c;
        if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1))
          d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c;
        if ((++d->m_lookahead_size + d->m_dict_size) >= TDEFL_MIN_MATCH_LEN)
        {
          mz_uint ins_pos = d->m_lookahead_pos + (d->m_lookahead_size - 1) - 2;
          mz_uint hash = ((d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] << (TDEFL_LZ_HASH_SHIFT * 2)) ^ (d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK] << TDEFL_LZ_HASH_SHIFT) ^ c) & (TDEFL_LZ_HASH_SIZE - 1);
          d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash]; d->m_hash[hash] = (mz_uint16)(ins_pos);
        }
      }
    }
    d->m_dict_size = MZ_MIN(TDEFL_LZ_DICT_SIZE - d->m_lookahead_size, d->m_dict_size);
    if ((!flush) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN))
      break;

    // Simple lazy/greedy parsing state machine.
    len_to_move = 1; cur_match_dist = 0; cur_match_len = d->m_saved_match_len ? d->m_saved_match_len : (TDEFL_MIN_MATCH_LEN - 1); cur_pos = d->m_lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK;
    if (d->m_flags & (TDEFL_RLE_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS))
    {
      if ((d->m_dict_size) && (!(d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS)))
      {
        mz_uint8 c = d->m_dict[(cur_pos - 1) & TDEFL_LZ_DICT_SIZE_MASK];
        cur_match_len = 0; while (cur_match_len < d->m_lookahead_size) { if (d->m_dict[cur_pos + cur_match_len] != c) break; cur_match_len++; }
        if (cur_match_len < TDEFL_MIN_MATCH_LEN) cur_match_len = 0; else cur_match_dist = 1;
      }
    }
    else
    {
      tdefl_find_match(d, d->m_lookahead_pos, d->m_dict_size, d->m_lookahead_size, &cur_match_dist, &cur_match_len);
    }
    if (((cur_match_len == TDEFL_MIN_MATCH_LEN) && (cur_match_dist >= 8U*1024U)) || (cur_pos == cur_match_dist) || ((d->m_flags & TDEFL_FILTER_MATCHES) && (cur_match_len <= 5)))
    {
      cur_match_dist = cur_match_len = 0;
    }
    if (d->m_saved_match_len)
    {
      if (cur_match_len > d->m_saved_match_len)
      {
        tdefl_record_literal(d, (mz_uint8)d->m_saved_lit);
        if (cur_match_len >= 128)
        {
          tdefl_record_match(d, cur_match_len, cur_match_dist);
          d->m_saved_match_len = 0; len_to_move = cur_match_len;
        }
        else
        {
          d->m_saved_lit = d->m_dict[cur_pos]; d->m_saved_match_dist = cur_match_dist; d->m_saved_match_len = cur_match_len;
        }
      }
      else
      {
        tdefl_record_match(d, d->m_saved_match_len, d->m_saved_match_dist);
        len_to_move = d->m_saved_match_len - 1; d->m_saved_match_len = 0;
      }
    }
    else if (!cur_match_dist)
      tdefl_record_literal(d, d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]);
    else if ((d->m_greedy_parsing) || (d->m_flags & TDEFL_RLE_MATCHES) || (cur_match_len >= 128))
    {
      tdefl_record_match(d, cur_match_len, cur_match_dist);
      len_to_move = cur_match_len;
    }
    else
    {
      d->m_saved_lit = d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]; d->m_saved_match_dist = cur_match_dist; d->m_saved_match_len = cur_match_len;
    }
    // Move the lookahead forward by len_to_move bytes.
    d->m_lookahead_pos += len_to_move;
    MZ_ASSERT(d->m_lookahead_size >= len_to_move);
    d->m_lookahead_size -= len_to_move;
    d->m_dict_size = MZ_MIN(d->m_dict_size + len_to_move, TDEFL_LZ_DICT_SIZE);
    // Check if it's time to flush the current LZ codes to the internal output buffer.
    if ( (d->m_pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) ||
         ( (d->m_total_lz_bytes > 31*1024) && (((((mz_uint)(d->m_pLZ_code_buf - d->m_lz_code_buf) * 115) >> 7) >= d->m_total_lz_bytes) || (d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS))) )
    {
      int n;
      d->m_pSrc = pSrc; d->m_src_buf_left = src_buf_left;
      if ((n = tdefl_flush_block(d, 0)) != 0)
        return (n < 0) ? MZ_FALSE : MZ_TRUE;
    }
  }

  d->m_pSrc = pSrc; d->m_src_buf_left = src_buf_left;
  return MZ_TRUE;
}

static tdefl_status tdefl_flush_output_buffer(tdefl_compressor *d)
{
  if (d->m_pIn_buf_size)
  {
    *d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf;
  }

  if (d->m_pOut_buf_size)
  {
    size_t n = MZ_MIN(*d->m_pOut_buf_size - d->m_out_buf_ofs, d->m_output_flush_remaining);
    memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf + d->m_output_flush_ofs, n);
    d->m_output_flush_ofs += (mz_uint)n;
    d->m_output_flush_remaining -= (mz_uint)n;
    d->m_out_buf_ofs += n;

    *d->m_pOut_buf_size = d->m_out_buf_ofs;
  }

  return (d->m_finished && !d->m_output_flush_remaining) ? TDEFL_STATUS_DONE : TDEFL_STATUS_OKAY;
}

tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf, size_t *pIn_buf_size, void *pOut_buf, size_t *pOut_buf_size, tdefl_flush flush)
{
  if (!d)
  {
    if (pIn_buf_size) *pIn_buf_size = 0;
    if (pOut_buf_size) *pOut_buf_size = 0;
    return TDEFL_STATUS_BAD_PARAM;
  }

  d->m_pIn_buf = pIn_buf; d->m_pIn_buf_size = pIn_buf_size;
  d->m_pOut_buf = pOut_buf; d->m_pOut_buf_size = pOut_buf_size;
  d->m_pSrc = (const mz_uint8 *)(pIn_buf); d->m_src_buf_left = pIn_buf_size ? *pIn_buf_size : 0;
  d->m_out_buf_ofs = 0;
  d->m_flush = flush;

  if ( ((d->m_pPut_buf_func != NULL) == ((pOut_buf != NULL) || (pOut_buf_size != NULL))) || (d->m_prev_return_status != TDEFL_STATUS_OKAY) ||
        (d->m_wants_to_finish && (flush != TDEFL_FINISH)) || (pIn_buf_size && *pIn_buf_size && !pIn_buf) || (pOut_buf_size && *pOut_buf_size && !pOut_buf) )
  {
    if (pIn_buf_size) *pIn_buf_size = 0;
    if (pOut_buf_size) *pOut_buf_size = 0;
    return (d->m_prev_return_status = TDEFL_STATUS_BAD_PARAM);
  }
  d->m_wants_to_finish |= (flush == TDEFL_FINISH);

  if ((d->m_output_flush_remaining) || (d->m_finished))
    return (d->m_prev_return_status = tdefl_flush_output_buffer(d));

#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
  if (((d->m_flags & TDEFL_MAX_PROBES_MASK) == 1) &&
      ((d->m_flags & TDEFL_GREEDY_PARSING_FLAG) != 0) &&
      ((d->m_flags & (TDEFL_FILTER_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS | TDEFL_RLE_MATCHES)) == 0))
  {
    if (!tdefl_compress_fast(d))
      return d->m_prev_return_status;
  }
  else
#endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
  {
    if (!tdefl_compress_normal(d))
      return d->m_prev_return_status;
  }

  if ((d->m_flags & (TDEFL_WRITE_ZLIB_HEADER | TDEFL_COMPUTE_ADLER32)) && (pIn_buf))
    d->m_adler32 = (mz_uint32)mz_adler32(d->m_adler32, (const mz_uint8 *)pIn_buf, d->m_pSrc - (const mz_uint8 *)pIn_buf);

  if ((flush) && (!d->m_lookahead_size) && (!d->m_src_buf_left) && (!d->m_output_flush_remaining))
  {
    if (tdefl_flush_block(d, flush) < 0)
      return d->m_prev_return_status;
    d->m_finished = (flush == TDEFL_FINISH);
    if (flush == TDEFL_FULL_FLUSH) { MZ_CLEAR_OBJ(d->m_hash); MZ_CLEAR_OBJ(d->m_next); d->m_dict_size = 0; }
  }

  return (d->m_prev_return_status = tdefl_flush_output_buffer(d));
}

tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf, size_t in_buf_size, tdefl_flush flush)
{
  MZ_ASSERT(d->m_pPut_buf_func); return tdefl_compress(d, pIn_buf, &in_buf_size, NULL, NULL, flush);
}

tdefl_status tdefl_init(tdefl_compressor *d, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags)
{
  d->m_pPut_buf_func = pPut_buf_func; d->m_pPut_buf_user = pPut_buf_user;
  d->m_flags = (mz_uint)(flags); d->m_max_probes[0] = 1 + ((flags & 0xFFF) + 2) / 3; d->m_greedy_parsing = (flags & TDEFL_GREEDY_PARSING_FLAG) != 0;
  d->m_max_probes[1] = 1 + (((flags & 0xFFF) >> 2) + 2) / 3;
  if (!(flags & TDEFL_NONDETERMINISTIC_PARSING_FLAG)) MZ_CLEAR_OBJ(d->m_hash);
  d->m_lookahead_pos = d->m_lookahead_size = d->m_dict_size = d->m_total_lz_bytes = d->m_lz_code_buf_dict_pos = d->m_bits_in = 0;
  d->m_output_flush_ofs = d->m_output_flush_remaining = d->m_finished = d->m_block_index = d->m_bit_buffer = d->m_wants_to_finish = 0;
  d->m_pLZ_code_buf = d->m_lz_code_buf + 1; d->m_pLZ_flags = d->m_lz_code_buf; d->m_num_flags_left = 8;
  d->m_pOutput_buf = d->m_output_buf; d->m_pOutput_buf_end = d->m_output_buf; d->m_prev_return_status = TDEFL_STATUS_OKAY;
  d->m_saved_match_dist = d->m_saved_match_len = d->m_saved_lit = 0; d->m_adler32 = 1;
  d->m_pIn_buf = NULL; d->m_pOut_buf = NULL;
  d->m_pIn_buf_size = NULL; d->m_pOut_buf_size = NULL;
  d->m_flush = TDEFL_NO_FLUSH; d->m_pSrc = NULL; d->m_src_buf_left = 0; d->m_out_buf_ofs = 0;
  memset(&d->m_huff_count[0][0], 0, sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0);
  memset(&d->m_huff_count[1][0], 0, sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1);
  return TDEFL_STATUS_OKAY;
}

tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d)
{
  return d->m_prev_return_status;
}

mz_uint32 tdefl_get_adler32(tdefl_compressor *d)
{
  return d->m_adler32;
}

mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len, tdefl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags)
{
  tdefl_compressor *pComp; mz_bool succeeded; if (((buf_len) && (!pBuf)) || (!pPut_buf_func)) return MZ_FALSE;
  pComp = (tdefl_compressor*)MZ_MALLOC(sizeof(tdefl_compressor)); if (!pComp) return MZ_FALSE;
  succeeded = (tdefl_init(pComp, pPut_buf_func, pPut_buf_user, flags) == TDEFL_STATUS_OKAY);
  succeeded = succeeded && (tdefl_compress_buffer(pComp, pBuf, buf_len, TDEFL_FINISH) == TDEFL_STATUS_DONE);
  MZ_FREE(pComp); return succeeded;
}

typedef struct
{
  size_t m_size, m_capacity;
  mz_uint8 *m_pBuf;
  mz_bool m_expandable;
} tdefl_output_buffer;

static mz_bool tdefl_output_buffer_putter(const void *pBuf, int len, void *pUser)
{
  tdefl_output_buffer *p = (tdefl_output_buffer *)pUser;
  size_t new_size = p->m_size + len;
  if (new_size > p->m_capacity)
  {
    size_t new_capacity = p->m_capacity; mz_uint8 *pNew_buf; if (!p->m_expandable) return MZ_FALSE;
    do { new_capacity = MZ_MAX(128U, new_capacity << 1U); } while (new_size > new_capacity);
    pNew_buf = (mz_uint8*)MZ_REALLOC(p->m_pBuf, new_capacity); if (!pNew_buf) return MZ_FALSE;
    p->m_pBuf = pNew_buf; p->m_capacity = new_capacity;
  }
  memcpy((mz_uint8*)p->m_pBuf + p->m_size, pBuf, len); p->m_size = new_size;
  return MZ_TRUE;
}

void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags)
{
  tdefl_output_buffer out_buf; MZ_CLEAR_OBJ(out_buf);
  if (!pOut_len) return MZ_FALSE; else *pOut_len = 0;
  out_buf.m_expandable = MZ_TRUE;
  if (!tdefl_compress_mem_to_output(pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags)) return NULL;
  *pOut_len = out_buf.m_size; return out_buf.m_pBuf;
}

size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags)
{
  tdefl_output_buffer out_buf; MZ_CLEAR_OBJ(out_buf);
  if (!pOut_buf) return 0;
  out_buf.m_pBuf = (mz_uint8*)pOut_buf; out_buf.m_capacity = out_buf_len;
  if (!tdefl_compress_mem_to_output(pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags)) return 0;
  return out_buf.m_size;
}

#ifndef MINIZ_NO_ZLIB_APIS
static const mz_uint s_tdefl_num_probes[11] = { 0, 1, 6, 32,  16, 32, 128, 256,  512, 768, 1500 };

// level may actually range from [0,10] (10 is a "hidden" max level, where we want a bit more compression and it's fine if throughput to fall off a cliff on some files).
mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits, int strategy)
{
  mz_uint comp_flags = s_tdefl_num_probes[(level >= 0) ? MZ_MIN(10, level) : MZ_DEFAULT_LEVEL] | ((level <= 3) ? TDEFL_GREEDY_PARSING_FLAG : 0);
  if (window_bits > 0) comp_flags |= TDEFL_WRITE_ZLIB_HEADER;

  if (!level) comp_flags |= TDEFL_FORCE_ALL_RAW_BLOCKS;
  else if (strategy == MZ_FILTERED) comp_flags |= TDEFL_FILTER_MATCHES;
  else if (strategy == MZ_HUFFMAN_ONLY) comp_flags &= ~TDEFL_MAX_PROBES_MASK;
  else if (strategy == MZ_FIXED) comp_flags |= TDEFL_FORCE_ALL_STATIC_BLOCKS;
  else if (strategy == MZ_RLE) comp_flags |= TDEFL_RLE_MATCHES;

  return comp_flags;
}
#endif //MINIZ_NO_ZLIB_APIS

#ifdef _MSC_VER
#pragma warning (push)
#pragma warning (disable:4204) // nonstandard extension used : non-constant aggregate initializer (also supported by GNU C and C99, so no big deal)
#endif

// Simple PNG writer function by Alex Evans, 2011. Released into the public domain: https://gist.github.com/908299, more context at
// http://altdevblogaday.org/2011/04/06/a-smaller-jpg-encoder/.
// This is actually a modification of Alex's original code so PNG files generated by this function pass pngcheck.
void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w, int h, int num_chans, size_t *pLen_out, mz_uint level, mz_bool flip)
{
  // Using a local copy of this array here in case MINIZ_NO_ZLIB_APIS was defined.
  static const mz_uint s_tdefl_png_num_probes[11] = { 0, 1, 6, 32,  16, 32, 128, 256,  512, 768, 1500 };
  tdefl_compressor *pComp = (tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor)); tdefl_output_buffer out_buf; int i, bpl = w * num_chans, y, z; mz_uint32 c; *pLen_out = 0;
  if (!pComp) return NULL;
  MZ_CLEAR_OBJ(out_buf); out_buf.m_expandable = MZ_TRUE; out_buf.m_capacity = 57+MZ_MAX(64, (1+bpl)*h); if (NULL == (out_buf.m_pBuf = (mz_uint8*)MZ_MALLOC(out_buf.m_capacity))) { MZ_FREE(pComp); return NULL; }
  // write dummy header
  for (z = 41; z; --z) tdefl_output_buffer_putter(&z, 1, &out_buf);
  // compress image data
  tdefl_init(pComp, tdefl_output_buffer_putter, &out_buf, s_tdefl_png_num_probes[MZ_MIN(10, level)] | TDEFL_WRITE_ZLIB_HEADER);
  for (y = 0; y < h; ++y) { tdefl_compress_buffer(pComp, &z, 1, TDEFL_NO_FLUSH); tdefl_compress_buffer(pComp, (mz_uint8*)pImage + (flip ? (h - 1 - y) : y) * bpl, bpl, TDEFL_NO_FLUSH); }
  if (tdefl_compress_buffer(pComp, NULL, 0, TDEFL_FINISH) != TDEFL_STATUS_DONE) { MZ_FREE(pComp); MZ_FREE(out_buf.m_pBuf); return NULL; }
  // write real header
  *pLen_out = out_buf.m_size-41;
  {
    static const mz_uint8 chans[] = {0x00, 0x00, 0x04, 0x02, 0x06};
    mz_uint8 pnghdr[41]={0x89,0x50,0x4e,0x47,0x0d,0x0a,0x1a,0x0a,0x00,0x00,0x00,0x0d,0x49,0x48,0x44,0x52,
      0,0,(mz_uint8)(w>>8),(mz_uint8)w,0,0,(mz_uint8)(h>>8),(mz_uint8)h,8,chans[num_chans],0,0,0,0,0,0,0,
      (mz_uint8)(*pLen_out>>24),(mz_uint8)(*pLen_out>>16),(mz_uint8)(*pLen_out>>8),(mz_uint8)*pLen_out,0x49,0x44,0x41,0x54};
    c=(mz_uint32)mz_crc32(MZ_CRC32_INIT,pnghdr+12,17); for (i=0; i<4; ++i, c<<=8) ((mz_uint8*)(pnghdr+29))[i]=(mz_uint8)(c>>24);
    memcpy(out_buf.m_pBuf, pnghdr, 41);
  }
  // write footer (IDAT CRC-32, followed by IEND chunk)
  if (!tdefl_output_buffer_putter("\0\0\0\0\0\0\0\0\x49\x45\x4e\x44\xae\x42\x60\x82", 16, &out_buf)) { *pLen_out = 0; MZ_FREE(pComp); MZ_FREE(out_buf.m_pBuf); return NULL; }
  c = (mz_uint32)mz_crc32(MZ_CRC32_INIT,out_buf.m_pBuf+41-4, *pLen_out+4); for (i=0; i<4; ++i, c<<=8) (out_buf.m_pBuf+out_buf.m_size-16)[i] = (mz_uint8)(c >> 24);
  // compute final size of file, grab compressed data buffer and return
  *pLen_out += 57; MZ_FREE(pComp); return out_buf.m_pBuf;
}
void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h, int num_chans, size_t *pLen_out)
{
  // Level 6 corresponds to TDEFL_DEFAULT_MAX_PROBES or MZ_DEFAULT_LEVEL (but we can't depend on MZ_DEFAULT_LEVEL being available in case the zlib API's where #defined out)
  return tdefl_write_image_to_png_file_in_memory_ex(pImage, w, h, num_chans, pLen_out, 6, MZ_FALSE);
}

#ifdef _MSC_VER
#pragma warning (pop)
#endif

// ------------------- .ZIP archive reading

#ifndef MINIZ_NO_ARCHIVE_APIS

#ifdef MINIZ_NO_STDIO
  #define MZ_FILE void *
#else
  #include <stdio.h>
  #include <sys/stat.h>

  #if defined(_MSC_VER) || defined(__MINGW64__)
    static FILE *mz_fopen(const char *pFilename, const char *pMode)
    {
      FILE* pFile = NULL;
      fopen_s(&pFile, pFilename, pMode);
      return pFile;
    }
    static FILE *mz_freopen(const char *pPath, const char *pMode, FILE *pStream)
    {
      FILE* pFile = NULL;
      if (freopen_s(&pFile, pPath, pMode, pStream))
        return NULL;
      return pFile;
    }
    #ifndef MINIZ_NO_TIME
      #include <sys/utime.h>
    #endif
    #define MZ_FILE FILE
    #define MZ_FOPEN mz_fopen
    #define MZ_FCLOSE fclose
    #define MZ_FREAD fread
    #define MZ_FWRITE fwrite
    #define MZ_FTELL64 _ftelli64
    #define MZ_FSEEK64 _fseeki64
    #define MZ_FILE_STAT_STRUCT _stat
    #define MZ_FILE_STAT _stat
    #define MZ_FFLUSH fflush
    #define MZ_FREOPEN mz_freopen
    #define MZ_DELETE_FILE remove
  #elif defined(__MINGW32__)
    #ifndef MINIZ_NO_TIME
      #include <sys/utime.h>
    #endif
    #define MZ_FILE FILE
    #define MZ_FOPEN(f, m) fopen(f, m)
    #define MZ_FCLOSE fclose
    #define MZ_FREAD fread
    #define MZ_FWRITE fwrite
    #define MZ_FTELL64 ftello64
    #define MZ_FSEEK64 fseeko64
    #define MZ_FILE_STAT_STRUCT _stat
    #define MZ_FILE_STAT _stat
    #define MZ_FFLUSH fflush
    #define MZ_FREOPEN(f, m, s) freopen(f, m, s)
    #define MZ_DELETE_FILE remove
  #elif defined(__TINYC__)
    #ifndef MINIZ_NO_TIME
      #include <sys/utime.h>
    #endif
    #define MZ_FILE FILE
    #define MZ_FOPEN(f, m) fopen(f, m)
    #define MZ_FCLOSE fclose
    #define MZ_FREAD fread
    #define MZ_FWRITE fwrite
    #define MZ_FTELL64 ftell
    #define MZ_FSEEK64 fseek
    #define MZ_FILE_STAT_STRUCT stat
    #define MZ_FILE_STAT stat
    #define MZ_FFLUSH fflush
    #define MZ_FREOPEN(f, m, s) freopen(f, m, s)
    #define MZ_DELETE_FILE remove
  #elif defined(__GNUC__) && _LARGEFILE64_SOURCE
    #ifndef MINIZ_NO_TIME
      #include <utime.h>
    #endif
    #define MZ_FILE FILE
    #define MZ_FOPEN(f, m) fopen64(f, m)
    #define MZ_FCLOSE fclose
    #define MZ_FREAD fread
    #define MZ_FWRITE fwrite
    #define MZ_FTELL64 ftello64
    #define MZ_FSEEK64 fseeko64
    #define MZ_FILE_STAT_STRUCT stat64
    #define MZ_FILE_STAT stat64
    #define MZ_FFLUSH fflush
    #define MZ_FREOPEN(p, m, s) freopen64(p, m, s)
    #define MZ_DELETE_FILE remove
  #else
    #ifndef MINIZ_NO_TIME
      #include <utime.h>
    #endif
    #define MZ_FILE FILE
    #define MZ_FOPEN(f, m) fopen(f, m)
    #define MZ_FCLOSE fclose
    #define MZ_FREAD fread
    #define MZ_FWRITE fwrite
    #define MZ_FTELL64 ftello
    #define MZ_FSEEK64 fseeko
    #define MZ_FILE_STAT_STRUCT stat
    #define MZ_FILE_STAT stat
    #define MZ_FFLUSH fflush
    #define MZ_FREOPEN(f, m, s) freopen(f, m, s)
    #define MZ_DELETE_FILE remove
  #endif // #ifdef _MSC_VER
#endif // #ifdef MINIZ_NO_STDIO

#define MZ_TOLOWER(c) ((((c) >= 'A') && ((c) <= 'Z')) ? ((c) - 'A' + 'a') : (c))

// Various ZIP archive enums. To completely avoid cross platform compiler alignment and platform endian issues, miniz.c doesn't use structs for any of this stuff.
enum
{
  // ZIP archive identifiers and record sizes
  MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG = 0x06054b50, MZ_ZIP_CENTRAL_DIR_HEADER_SIG = 0x02014b50, MZ_ZIP_LOCAL_DIR_HEADER_SIG = 0x04034b50,
  MZ_ZIP_LOCAL_DIR_HEADER_SIZE = 30, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE = 46, MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE = 22,
  // Central directory header record offsets
  MZ_ZIP_CDH_SIG_OFS = 0, MZ_ZIP_CDH_VERSION_MADE_BY_OFS = 4, MZ_ZIP_CDH_VERSION_NEEDED_OFS = 6, MZ_ZIP_CDH_BIT_FLAG_OFS = 8,
  MZ_ZIP_CDH_METHOD_OFS = 10, MZ_ZIP_CDH_FILE_TIME_OFS = 12, MZ_ZIP_CDH_FILE_DATE_OFS = 14, MZ_ZIP_CDH_CRC32_OFS = 16,
  MZ_ZIP_CDH_COMPRESSED_SIZE_OFS = 20, MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS = 24, MZ_ZIP_CDH_FILENAME_LEN_OFS = 28, MZ_ZIP_CDH_EXTRA_LEN_OFS = 30,
  MZ_ZIP_CDH_COMMENT_LEN_OFS = 32, MZ_ZIP_CDH_DISK_START_OFS = 34, MZ_ZIP_CDH_INTERNAL_ATTR_OFS = 36, MZ_ZIP_CDH_EXTERNAL_ATTR_OFS = 38, MZ_ZIP_CDH_LOCAL_HEADER_OFS = 42,
  // Local directory header offsets
  MZ_ZIP_LDH_SIG_OFS = 0, MZ_ZIP_LDH_VERSION_NEEDED_OFS = 4, MZ_ZIP_LDH_BIT_FLAG_OFS = 6, MZ_ZIP_LDH_METHOD_OFS = 8, MZ_ZIP_LDH_FILE_TIME_OFS = 10,
  MZ_ZIP_LDH_FILE_DATE_OFS = 12, MZ_ZIP_LDH_CRC32_OFS = 14, MZ_ZIP_LDH_COMPRESSED_SIZE_OFS = 18, MZ_ZIP_LDH_DECOMPRESSED_SIZE_OFS = 22,
  MZ_ZIP_LDH_FILENAME_LEN_OFS = 26, MZ_ZIP_LDH_EXTRA_LEN_OFS = 28,
  // End of central directory offsets
  MZ_ZIP_ECDH_SIG_OFS = 0, MZ_ZIP_ECDH_NUM_THIS_DISK_OFS = 4, MZ_ZIP_ECDH_NUM_DISK_CDIR_OFS = 6, MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS = 8,
  MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS = 10, MZ_ZIP_ECDH_CDIR_SIZE_OFS = 12, MZ_ZIP_ECDH_CDIR_OFS_OFS = 16, MZ_ZIP_ECDH_COMMENT_SIZE_OFS = 20,
};

typedef struct
{
  void *m_p;
  size_t m_size, m_capacity;
  mz_uint m_element_size;
} mz_zip_array;

struct mz_zip_internal_state_tag
{
  mz_zip_array m_central_dir;
  mz_zip_array m_central_dir_offsets;
  mz_zip_array m_sorted_central_dir_offsets;
  MZ_FILE *m_pFile;
  void *m_pMem;
  size_t m_mem_size;
  size_t m_mem_capacity;
};

#define MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(array_ptr, element_size) (array_ptr)->m_element_size = element_size
#define MZ_ZIP_ARRAY_ELEMENT(array_ptr, element_type, index) ((element_type *)((array_ptr)->m_p))[index]

static MZ_FORCEINLINE void mz_zip_array_clear(mz_zip_archive *pZip, mz_zip_array *pArray)
{
  pZip->m_pFree(pZip->m_pAlloc_opaque, pArray->m_p);
  memset(pArray, 0, sizeof(mz_zip_array));
}

static mz_bool mz_zip_array_ensure_capacity(mz_zip_archive *pZip, mz_zip_array *pArray, size_t min_new_capacity, mz_uint growing)
{
  void *pNew_p; size_t new_capacity = min_new_capacity; MZ_ASSERT(pArray->m_element_size); if (pArray->m_capacity >= min_new_capacity) return MZ_TRUE;
  if (growing) { new_capacity = MZ_MAX(1, pArray->m_capacity); while (new_capacity < min_new_capacity) new_capacity *= 2; }
  if (NULL == (pNew_p = pZip->m_pRealloc(pZip->m_pAlloc_opaque, pArray->m_p, pArray->m_element_size, new_capacity))) return MZ_FALSE;
  pArray->m_p = pNew_p; pArray->m_capacity = new_capacity;
  return MZ_TRUE;
}

static MZ_FORCEINLINE mz_bool mz_zip_array_reserve(mz_zip_archive *pZip, mz_zip_array *pArray, size_t new_capacity, mz_uint growing)
{
  if (new_capacity > pArray->m_capacity) { if (!mz_zip_array_ensure_capacity(pZip, pArray, new_capacity, growing)) return MZ_FALSE; }
  return MZ_TRUE;
}

static MZ_FORCEINLINE mz_bool mz_zip_array_resize(mz_zip_archive *pZip, mz_zip_array *pArray, size_t new_size, mz_uint growing)
{
  if (new_size > pArray->m_capacity) { if (!mz_zip_array_ensure_capacity(pZip, pArray, new_size, growing)) return MZ_FALSE; }
  pArray->m_size = new_size;
  return MZ_TRUE;
}

static MZ_FORCEINLINE mz_bool mz_zip_array_ensure_room(mz_zip_archive *pZip, mz_zip_array *pArray, size_t n)
{
  return mz_zip_array_reserve(pZip, pArray, pArray->m_size + n, MZ_TRUE);
}

static MZ_FORCEINLINE mz_bool mz_zip_array_push_back(mz_zip_archive *pZip, mz_zip_array *pArray, const void *pElements, size_t n)
{
  size_t orig_size = pArray->m_size; if (!mz_zip_array_resize(pZip, pArray, orig_size + n, MZ_TRUE)) return MZ_FALSE;
  memcpy((mz_uint8*)pArray->m_p + orig_size * pArray->m_element_size, pElements, n * pArray->m_element_size);
  return MZ_TRUE;
}

#ifndef MINIZ_NO_TIME
static time_t mz_zip_dos_to_time_t(int dos_time, int dos_date)
{
  struct tm tm;
  memset(&tm, 0, sizeof(tm)); tm.tm_isdst = -1;
  tm.tm_year = ((dos_date >> 9) & 127) + 1980 - 1900; tm.tm_mon = ((dos_date >> 5) & 15) - 1; tm.tm_mday = dos_date & 31;
  tm.tm_hour = (dos_time >> 11) & 31; tm.tm_min = (dos_time >> 5) & 63; tm.tm_sec = (dos_time << 1) & 62;
  return mktime(&tm);
}

static void mz_zip_time_to_dos_time(time_t time, mz_uint16 *pDOS_time, mz_uint16 *pDOS_date)
{
#ifdef _MSC_VER
  struct tm tm_struct;
  struct tm *tm = &tm_struct;
  errno_t err = localtime_s(tm, &time);
  if (err)
  {
    *pDOS_date = 0; *pDOS_time = 0;
    return;
  }
#else
  struct tm *tm = localtime(&time);
#endif
  *pDOS_time = (mz_uint16)(((tm->tm_hour) << 11) + ((tm->tm_min) << 5) + ((tm->tm_sec) >> 1));
  *pDOS_date = (mz_uint16)(((tm->tm_year + 1900 - 1980) << 9) + ((tm->tm_mon + 1) << 5) + tm->tm_mday);
}
#endif

#ifndef MINIZ_NO_STDIO
static mz_bool mz_zip_get_file_modified_time(const char *pFilename, mz_uint16 *pDOS_time, mz_uint16 *pDOS_date)
{
#ifdef MINIZ_NO_TIME
  (void)pFilename; *pDOS_date = *pDOS_time = 0;
#else
  struct MZ_FILE_STAT_STRUCT file_stat;
  // On Linux with x86 glibc, this call will fail on large files (>= 0x80000000 bytes) unless you compiled with _LARGEFILE64_SOURCE. Argh.
  if (MZ_FILE_STAT(pFilename, &file_stat) != 0)
    return MZ_FALSE;
  mz_zip_time_to_dos_time(file_stat.st_mtime, pDOS_time, pDOS_date);
#endif // #ifdef MINIZ_NO_TIME
  return MZ_TRUE;
}

#ifndef MINIZ_NO_TIME
static mz_bool mz_zip_set_file_times(const char *pFilename, time_t access_time, time_t modified_time)
{
  struct utimbuf t; t.actime = access_time; t.modtime = modified_time;
  return !utime(pFilename, &t);
}
#endif // #ifndef MINIZ_NO_TIME
#endif // #ifndef MINIZ_NO_STDIO

static mz_bool mz_zip_reader_init_internal(mz_zip_archive *pZip, mz_uint32 flags)
{
  (void)flags;
  if ((!pZip) || (pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_INVALID))
    return MZ_FALSE;

  if (!pZip->m_pAlloc) pZip->m_pAlloc = def_alloc_func;
  if (!pZip->m_pFree) pZip->m_pFree = def_free_func;
  if (!pZip->m_pRealloc) pZip->m_pRealloc = def_realloc_func;

  pZip->m_zip_mode = MZ_ZIP_MODE_READING;
  pZip->m_archive_size = 0;
  pZip->m_central_directory_file_ofs = 0;
  pZip->m_total_files = 0;

  if (NULL == (pZip->m_pState = (mz_zip_internal_state *)pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, sizeof(mz_zip_internal_state))))
    return MZ_FALSE;
  memset(pZip->m_pState, 0, sizeof(mz_zip_internal_state));
  MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir, sizeof(mz_uint8));
  MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir_offsets, sizeof(mz_uint32));
  MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_sorted_central_dir_offsets, sizeof(mz_uint32));
  return MZ_TRUE;
}

static MZ_FORCEINLINE mz_bool mz_zip_reader_filename_less(const mz_zip_array *pCentral_dir_array, const mz_zip_array *pCentral_dir_offsets, mz_uint l_index, mz_uint r_index)
{
  const mz_uint8 *pL = &MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_array, mz_uint8, MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32, l_index)), *pE;
  const mz_uint8 *pR = &MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_array, mz_uint8, MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32, r_index));
  mz_uint l_len = MZ_READ_LE16(pL + MZ_ZIP_CDH_FILENAME_LEN_OFS), r_len = MZ_READ_LE16(pR + MZ_ZIP_CDH_FILENAME_LEN_OFS);
  mz_uint8 l = 0, r = 0;
  pL += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE; pR += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE;
  pE = pL + MZ_MIN(l_len, r_len);
  while (pL < pE)
  {
    if ((l = MZ_TOLOWER(*pL)) != (r = MZ_TOLOWER(*pR)))
      break;
    pL++; pR++;
  }
  return (pL == pE) ? (l_len < r_len) : (l < r);
}

#define MZ_SWAP_UINT32(a, b) do { mz_uint32 t = a; a = b; b = t; } MZ_MACRO_END

// Heap sort of lowercased filenames, used to help accelerate plain central directory searches by mz_zip_reader_locate_file(). (Could also use qsort(), but it could allocate memory.)
static void mz_zip_reader_sort_central_dir_offsets_by_filename(mz_zip_archive *pZip)
{
  mz_zip_internal_state *pState = pZip->m_pState;
  const mz_zip_array *pCentral_dir_offsets = &pState->m_central_dir_offsets;
  const mz_zip_array *pCentral_dir = &pState->m_central_dir;
  mz_uint32 *pIndices = &MZ_ZIP_ARRAY_ELEMENT(&pState->m_sorted_central_dir_offsets, mz_uint32, 0);
  const int size = pZip->m_total_files;
  int start = (size - 2) >> 1, end;
  while (start >= 0)
  {
    int child, root = start;
    for ( ; ; )
    {
      if ((child = (root << 1) + 1) >= size)
        break;
      child += (((child + 1) < size) && (mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets, pIndices[child], pIndices[child + 1])));
      if (!mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets, pIndices[root], pIndices[child]))
        break;
      MZ_SWAP_UINT32(pIndices[root], pIndices[child]); root = child;
    }
    start--;
  }

  end = size - 1;
  while (end > 0)
  {
    int child, root = 0;
    MZ_SWAP_UINT32(pIndices[end], pIndices[0]);
    for ( ; ; )
    {
      if ((child = (root << 1) + 1) >= end)
        break;
      child += (((child + 1) < end) && mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets, pIndices[child], pIndices[child + 1]));
      if (!mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets, pIndices[root], pIndices[child]))
        break;
      MZ_SWAP_UINT32(pIndices[root], pIndices[child]); root = child;
    }
    end--;
  }
}

static mz_bool mz_zip_reader_read_central_dir(mz_zip_archive *pZip, mz_uint32 flags)
{
  mz_uint cdir_size, num_this_disk, cdir_disk_index;
  mz_uint64 cdir_ofs;
  mz_int64 cur_file_ofs;
  const mz_uint8 *p;
  mz_uint32 buf_u32[4096 / sizeof(mz_uint32)]; mz_uint8 *pBuf = (mz_uint8 *)buf_u32;
  mz_bool sort_central_dir = ((flags & MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY) == 0);
  // Basic sanity checks - reject files which are too small, and check the first 4 bytes of the file to make sure a local header is there.
  if (pZip->m_archive_size < MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE)
    return MZ_FALSE;
  // Find the end of central directory record by scanning the file from the end towards the beginning.
  cur_file_ofs = MZ_MAX((mz_int64)pZip->m_archive_size - (mz_int64)sizeof(buf_u32), 0);
  for ( ; ; )
  {
    int i, n = (int)MZ_MIN(sizeof(buf_u32), pZip->m_archive_size - cur_file_ofs);
    if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf, n) != (mz_uint)n)
      return MZ_FALSE;
    for (i = n - 4; i >= 0; --i)
      if (MZ_READ_LE32(pBuf + i) == MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG)
        break;
    if (i >= 0)
    {
      cur_file_ofs += i;
      break;
    }
    if ((!cur_file_ofs) || ((pZip->m_archive_size - cur_file_ofs) >= (0xFFFF + MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE)))
      return MZ_FALSE;
    cur_file_ofs = MZ_MAX(cur_file_ofs - (sizeof(buf_u32) - 3), 0);
  }
  // Read and verify the end of central directory record.
  if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf, MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) != MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE)
    return MZ_FALSE;
  if ((MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_SIG_OFS) != MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG) ||
      ((pZip->m_total_files = MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS)) != MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS)))
    return MZ_FALSE;

  num_this_disk = MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_NUM_THIS_DISK_OFS);
  cdir_disk_index = MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_NUM_DISK_CDIR_OFS);
  if (((num_this_disk | cdir_disk_index) != 0) && ((num_this_disk != 1) || (cdir_disk_index != 1)))
    return MZ_FALSE;

  if ((cdir_size = MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_CDIR_SIZE_OFS)) < pZip->m_total_files * MZ_ZIP_CENTRAL_DIR_HEADER_SIZE)
    return MZ_FALSE;

  cdir_ofs = MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_CDIR_OFS_OFS);
  if ((cdir_ofs + (mz_uint64)cdir_size) > pZip->m_archive_size)
    return MZ_FALSE;

  pZip->m_central_directory_file_ofs = cdir_ofs;

  if (pZip->m_total_files)
  {
     mz_uint i, n;

    // Read the entire central directory into a heap block, and allocate another heap block to hold the unsorted central dir file record offsets, and another to hold the sorted indices.
    if ((!mz_zip_array_resize(pZip, &pZip->m_pState->m_central_dir, cdir_size, MZ_FALSE)) ||
        (!mz_zip_array_resize(pZip, &pZip->m_pState->m_central_dir_offsets, pZip->m_total_files, MZ_FALSE)))
      return MZ_FALSE;

    if (sort_central_dir)
    {
      if (!mz_zip_array_resize(pZip, &pZip->m_pState->m_sorted_central_dir_offsets, pZip->m_total_files, MZ_FALSE))
        return MZ_FALSE;
    }

    if (pZip->m_pRead(pZip->m_pIO_opaque, cdir_ofs, pZip->m_pState->m_central_dir.m_p, cdir_size) != cdir_size)
      return MZ_FALSE;

    // Now create an index into the central directory file records, do some basic sanity checking on each record, and check for zip64 entries (which are not yet supported).
    p = (const mz_uint8 *)pZip->m_pState->m_central_dir.m_p;
    for (n = cdir_size, i = 0; i < pZip->m_total_files; ++i)
    {
      mz_uint total_header_size, comp_size, decomp_size, disk_index;
      if ((n < MZ_ZIP_CENTRAL_DIR_HEADER_SIZE) || (MZ_READ_LE32(p) != MZ_ZIP_CENTRAL_DIR_HEADER_SIG))
        return MZ_FALSE;
      MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32, i) = (mz_uint32)(p - (const mz_uint8 *)pZip->m_pState->m_central_dir.m_p);
      if (sort_central_dir)
        MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_sorted_central_dir_offsets, mz_uint32, i) = i;
      comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);
      decomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS);
      if (((!MZ_READ_LE32(p + MZ_ZIP_CDH_METHOD_OFS)) && (decomp_size != comp_size)) || (decomp_size && !comp_size) || (decomp_size == 0xFFFFFFFF) || (comp_size == 0xFFFFFFFF))
        return MZ_FALSE;
      disk_index = MZ_READ_LE16(p + MZ_ZIP_CDH_DISK_START_OFS);
      if ((disk_index != num_this_disk) && (disk_index != 1))
        return MZ_FALSE;
      if (((mz_uint64)MZ_READ_LE32(p + MZ_ZIP_CDH_LOCAL_HEADER_OFS) + MZ_ZIP_LOCAL_DIR_HEADER_SIZE + comp_size) > pZip->m_archive_size)
        return MZ_FALSE;
      if ((total_header_size = MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS) + MZ_READ_LE16(p + MZ_ZIP_CDH_EXTRA_LEN_OFS) + MZ_READ_LE16(p + MZ_ZIP_CDH_COMMENT_LEN_OFS)) > n)
        return MZ_FALSE;
      n -= total_header_size; p += total_header_size;
    }
  }

  if (sort_central_dir)
    mz_zip_reader_sort_central_dir_offsets_by_filename(pZip);

  return MZ_TRUE;
}

mz_bool mz_zip_reader_init(mz_zip_archive *pZip, mz_uint64 size, mz_uint32 flags)
{
  if ((!pZip) || (!pZip->m_pRead))
    return MZ_FALSE;
  if (!mz_zip_reader_init_internal(pZip, flags))
    return MZ_FALSE;
  pZip->m_archive_size = size;
  if (!mz_zip_reader_read_central_dir(pZip, flags))
  {
    mz_zip_reader_end(pZip);
    return MZ_FALSE;
  }
  return MZ_TRUE;
}

static size_t mz_zip_mem_read_func(void *pOpaque, mz_uint64 file_ofs, void *pBuf, size_t n)
{
  mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
  size_t s = (file_ofs >= pZip->m_archive_size) ? 0 : (size_t)MZ_MIN(pZip->m_archive_size - file_ofs, n);
  memcpy(pBuf, (const mz_uint8 *)pZip->m_pState->m_pMem + file_ofs, s);
  return s;
}

mz_bool mz_zip_reader_init_mem(mz_zip_archive *pZip, const void *pMem, size_t size, mz_uint32 flags)
{
  if (!mz_zip_reader_init_internal(pZip, flags))
    return MZ_FALSE;
  pZip->m_archive_size = size;
  pZip->m_pRead = mz_zip_mem_read_func;
  pZip->m_pIO_opaque = pZip;
#ifdef __cplusplus
  pZip->m_pState->m_pMem = const_cast<void *>(pMem);
#else
  pZip->m_pState->m_pMem = (void *)pMem;
#endif
  pZip->m_pState->m_mem_size = size;
  if (!mz_zip_reader_read_central_dir(pZip, flags))
  {
    mz_zip_reader_end(pZip);
    return MZ_FALSE;
  }
  return MZ_TRUE;
}

#ifndef MINIZ_NO_STDIO
static size_t mz_zip_file_read_func(void *pOpaque, mz_uint64 file_ofs, void *pBuf, size_t n)
{
  mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
  mz_int64 cur_ofs = MZ_FTELL64(pZip->m_pState->m_pFile);
  if (((mz_int64)file_ofs < 0) || (((cur_ofs != (mz_int64)file_ofs)) && (MZ_FSEEK64(pZip->m_pState->m_pFile, (mz_int64)file_ofs, SEEK_SET))))
    return 0;
  return MZ_FREAD(pBuf, 1, n, pZip->m_pState->m_pFile);
}

mz_bool mz_zip_reader_init_file(mz_zip_archive *pZip, const char *pFilename, mz_uint32 flags)
{
  mz_uint64 file_size;
  MZ_FILE *pFile = MZ_FOPEN(pFilename, "rb");
  if (!pFile)
    return MZ_FALSE;
  if (MZ_FSEEK64(pFile, 0, SEEK_END))
  {
    MZ_FCLOSE(pFile);
    return MZ_FALSE;
  }
  file_size = MZ_FTELL64(pFile);
  if (!mz_zip_reader_init_internal(pZip, flags))
  {
    MZ_FCLOSE(pFile);
    return MZ_FALSE;
  }
  pZip->m_pRead = mz_zip_file_read_func;
  pZip->m_pIO_opaque = pZip;
  pZip->m_pState->m_pFile = pFile;
  pZip->m_archive_size = file_size;
  if (!mz_zip_reader_read_central_dir(pZip, flags))
  {
    mz_zip_reader_end(pZip);
    return MZ_FALSE;
  }
  return MZ_TRUE;
}
#endif // #ifndef MINIZ_NO_STDIO

mz_uint mz_zip_reader_get_num_files(mz_zip_archive *pZip)
{
  return pZip ? pZip->m_total_files : 0;
}

static MZ_FORCEINLINE const mz_uint8 *mz_zip_reader_get_cdh(mz_zip_archive *pZip, mz_uint file_index)
{
  if ((!pZip) || (!pZip->m_pState) || (file_index >= pZip->m_total_files) || (pZip->m_zip_mode != MZ_ZIP_MODE_READING))
    return NULL;
  return &MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir, mz_uint8, MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32, file_index));
}

mz_bool mz_zip_reader_is_file_encrypted(mz_zip_archive *pZip, mz_uint file_index)
{
  mz_uint m_bit_flag;
  const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
  if (!p)
    return MZ_FALSE;
  m_bit_flag = MZ_READ_LE16(p + MZ_ZIP_CDH_BIT_FLAG_OFS);
  return (m_bit_flag & 1);
}

mz_bool mz_zip_reader_is_file_a_directory(mz_zip_archive *pZip, mz_uint file_index)
{
  mz_uint filename_len, external_attr;
  const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
  if (!p)
    return MZ_FALSE;

  // First see if the filename ends with a '/' character.
  filename_len = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS);
  if (filename_len)
  {
    if (*(p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + filename_len - 1) == '/')
      return MZ_TRUE;
  }

  // Bugfix: This code was also checking if the internal attribute was non-zero, which wasn't correct.
  // Most/all zip writers (hopefully) set DOS file/directory attributes in the low 16-bits, so check for the DOS directory flag and ignore the source OS ID in the created by field.
  // FIXME: Remove this check? Is it necessary - we already check the filename.
  external_attr = MZ_READ_LE32(p + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS);
  if ((external_attr & 0x10) != 0)
    return MZ_TRUE;

  return MZ_FALSE;
}

mz_bool mz_zip_reader_file_stat(mz_zip_archive *pZip, mz_uint file_index, mz_zip_archive_file_stat *pStat)
{
  mz_uint n;
  const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
  if ((!p) || (!pStat))
    return MZ_FALSE;

  // Unpack the central directory record.
  pStat->m_file_index = file_index;
  pStat->m_central_dir_ofs = MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32, file_index);
  pStat->m_version_made_by = MZ_READ_LE16(p + MZ_ZIP_CDH_VERSION_MADE_BY_OFS);
  pStat->m_version_needed = MZ_READ_LE16(p + MZ_ZIP_CDH_VERSION_NEEDED_OFS);
  pStat->m_bit_flag = MZ_READ_LE16(p + MZ_ZIP_CDH_BIT_FLAG_OFS);
  pStat->m_method = MZ_READ_LE16(p + MZ_ZIP_CDH_METHOD_OFS);
#ifndef MINIZ_NO_TIME
  pStat->m_time = mz_zip_dos_to_time_t(MZ_READ_LE16(p + MZ_ZIP_CDH_FILE_TIME_OFS), MZ_READ_LE16(p + MZ_ZIP_CDH_FILE_DATE_OFS));
#endif
  pStat->m_crc32 = MZ_READ_LE32(p + MZ_ZIP_CDH_CRC32_OFS);
  pStat->m_comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);
  pStat->m_uncomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS);
  pStat->m_internal_attr = MZ_READ_LE16(p + MZ_ZIP_CDH_INTERNAL_ATTR_OFS);
  pStat->m_external_attr = MZ_READ_LE32(p + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS);
  pStat->m_local_header_ofs = MZ_READ_LE32(p + MZ_ZIP_CDH_LOCAL_HEADER_OFS);

  // Copy as much of the filename and comment as possible.
  n = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS); n = MZ_MIN(n, MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE - 1);
  memcpy(pStat->m_filename, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n); pStat->m_filename[n] = '\0';

  n = MZ_READ_LE16(p + MZ_ZIP_CDH_COMMENT_LEN_OFS); n = MZ_MIN(n, MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE - 1);
  pStat->m_comment_size = n;
  memcpy(pStat->m_comment, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS) + MZ_READ_LE16(p + MZ_ZIP_CDH_EXTRA_LEN_OFS), n); pStat->m_comment[n] = '\0';

  return MZ_TRUE;
}

mz_uint mz_zip_reader_get_filename(mz_zip_archive *pZip, mz_uint file_index, char *pFilename, mz_uint filename_buf_size)
{
  mz_uint n;
  const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
  if (!p) { if (filename_buf_size) pFilename[0] = '\0'; return 0; }
  n = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS);
  if (filename_buf_size)
  {
    n = MZ_MIN(n, filename_buf_size - 1);
    memcpy(pFilename, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n);
    pFilename[n] = '\0';
  }
  return n + 1;
}

static MZ_FORCEINLINE mz_bool mz_zip_reader_string_equal(const char *pA, const char *pB, mz_uint len, mz_uint flags)
{
  mz_uint i;
  if (flags & MZ_ZIP_FLAG_CASE_SENSITIVE)
    return 0 == memcmp(pA, pB, len);
  for (i = 0; i < len; ++i)
    if (MZ_TOLOWER(pA[i]) != MZ_TOLOWER(pB[i]))
      return MZ_FALSE;
  return MZ_TRUE;
}

static MZ_FORCEINLINE int mz_zip_reader_filename_compare(const mz_zip_array *pCentral_dir_array, const mz_zip_array *pCentral_dir_offsets, mz_uint l_index, const char *pR, mz_uint r_len)
{
  const mz_uint8 *pL = &MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_array, mz_uint8, MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32, l_index)), *pE;
  mz_uint l_len = MZ_READ_LE16(pL + MZ_ZIP_CDH_FILENAME_LEN_OFS);
  mz_uint8 l = 0, r = 0;
  pL += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE;
  pE = pL + MZ_MIN(l_len, r_len);
  while (pL < pE)
  {
    if ((l = MZ_TOLOWER(*pL)) != (r = MZ_TOLOWER(*pR)))
      break;
    pL++; pR++;
  }
  return (pL == pE) ? (int)(l_len - r_len) : (l - r);
}

static int mz_zip_reader_locate_file_binary_search(mz_zip_archive *pZip, const char *pFilename)
{
  mz_zip_internal_state *pState = pZip->m_pState;
  const mz_zip_array *pCentral_dir_offsets = &pState->m_central_dir_offsets;
  const mz_zip_array *pCentral_dir = &pState->m_central_dir;
  mz_uint32 *pIndices = &MZ_ZIP_ARRAY_ELEMENT(&pState->m_sorted_central_dir_offsets, mz_uint32, 0);
  const int size = pZip->m_total_files;
  const mz_uint filename_len = (mz_uint)strlen(pFilename);
  int l = 0, h = size - 1;
  while (l <= h)
  {
    int m = (l + h) >> 1, file_index = pIndices[m], comp = mz_zip_reader_filename_compare(pCentral_dir, pCentral_dir_offsets, file_index, pFilename, filename_len);
    if (!comp)
      return file_index;
    else if (comp < 0)
      l = m + 1;
    else
      h = m - 1;
  }
  return -1;
}

int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName, const char *pComment, mz_uint flags)
{
  mz_uint file_index; size_t name_len, comment_len;
  if ((!pZip) || (!pZip->m_pState) || (!pName) || (pZip->m_zip_mode != MZ_ZIP_MODE_READING))
    return -1;
  if (((flags & (MZ_ZIP_FLAG_IGNORE_PATH | MZ_ZIP_FLAG_CASE_SENSITIVE)) == 0) && (!pComment) && (pZip->m_pState->m_sorted_central_dir_offsets.m_size))
    return mz_zip_reader_locate_file_binary_search(pZip, pName);
  name_len = strlen(pName); if (name_len > 0xFFFF) return -1;
  comment_len = pComment ? strlen(pComment) : 0; if (comment_len > 0xFFFF) return -1;
  for (file_index = 0; file_index < pZip->m_total_files; file_index++)
  {
    const mz_uint8 *pHeader = &MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir, mz_uint8, MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32, file_index));
    mz_uint filename_len = MZ_READ_LE16(pHeader + MZ_ZIP_CDH_FILENAME_LEN_OFS);
    const char *pFilename = (const char *)pHeader + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE;
    if (filename_len < name_len)
      continue;
    if (comment_len)
    {
      mz_uint file_extra_len = MZ_READ_LE16(pHeader + MZ_ZIP_CDH_EXTRA_LEN_OFS), file_comment_len = MZ_READ_LE16(pHeader + MZ_ZIP_CDH_COMMENT_LEN_OFS);
      const char *pFile_comment = pFilename + filename_len + file_extra_len;
      if ((file_comment_len != comment_len) || (!mz_zip_reader_string_equal(pComment, pFile_comment, file_comment_len, flags)))
        continue;
    }
    if ((flags & MZ_ZIP_FLAG_IGNORE_PATH) && (filename_len))
    {
      int ofs = filename_len - 1;
      do
      {
        if ((pFilename[ofs] == '/') || (pFilename[ofs] == '\\') || (pFilename[ofs] == ':'))
          break;
      } while (--ofs >= 0);
      ofs++;
      pFilename += ofs; filename_len -= ofs;
    }
    if ((filename_len == name_len) && (mz_zip_reader_string_equal(pName, pFilename, filename_len, flags)))
      return file_index;
  }
  return -1;
}

mz_bool mz_zip_reader_extract_to_mem_no_alloc(mz_zip_archive *pZip, mz_uint file_index, void *pBuf, size_t buf_size, mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size)
{
  int status = TINFL_STATUS_DONE;
  mz_uint64 needed_size, cur_file_ofs, comp_remaining, out_buf_ofs = 0, read_buf_size, read_buf_ofs = 0, read_buf_avail;
  mz_zip_archive_file_stat file_stat;
  void *pRead_buf;
  mz_uint32 local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) / sizeof(mz_uint32)]; mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32;
  tinfl_decompressor inflator;

  if ((buf_size) && (!pBuf))
    return MZ_FALSE;

  if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat))
    return MZ_FALSE;

  // Empty file, or a directory (but not always a directory - I've seen odd zips with directories that have compressed data which inflates to 0 bytes)
  if (!file_stat.m_comp_size)
    return MZ_TRUE;

  // Entry is a subdirectory (I've seen old zips with dir entries which have compressed deflate data which inflates to 0 bytes, but these entries claim to uncompress to 512 bytes in the headers).
  // I'm torn how to handle this case - should it fail instead?
  if (mz_zip_reader_is_file_a_directory(pZip, file_index))
    return MZ_TRUE;

  // Encryption and patch files are not supported.
  if (file_stat.m_bit_flag & (1 | 32))
    return MZ_FALSE;

  // This function only supports stored and deflate.
  if ((!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (file_stat.m_method != 0) && (file_stat.m_method != MZ_DEFLATED))
    return MZ_FALSE;

  // Ensure supplied output buffer is large enough.
  needed_size = (flags & MZ_ZIP_FLAG_COMPRESSED_DATA) ? file_stat.m_comp_size : file_stat.m_uncomp_size;
  if (buf_size < needed_size)
    return MZ_FALSE;

  // Read and parse the local directory entry.
  cur_file_ofs = file_stat.m_local_header_ofs;
  if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pLocal_header, MZ_ZIP_LOCAL_DIR_HEADER_SIZE) != MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
    return MZ_FALSE;
  if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG)
    return MZ_FALSE;

  cur_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) + MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS);
  if ((cur_file_ofs + file_stat.m_comp_size) > pZip->m_archive_size)
    return MZ_FALSE;

  if ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) || (!file_stat.m_method))
  {
    // The file is stored or the caller has requested the compressed data.
    if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf, (size_t)needed_size) != needed_size)
      return MZ_FALSE;
    return ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) != 0) || (mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf, (size_t)file_stat.m_uncomp_size) == file_stat.m_crc32);
  }

  // Decompress the file either directly from memory or from a file input buffer.
  tinfl_init(&inflator);

  if (pZip->m_pState->m_pMem)
  {
    // Read directly from the archive in memory.
    pRead_buf = (mz_uint8 *)pZip->m_pState->m_pMem + cur_file_ofs;
    read_buf_size = read_buf_avail = file_stat.m_comp_size;
    comp_remaining = 0;
  }
  else if (pUser_read_buf)
  {
    // Use a user provided read buffer.
    if (!user_read_buf_size)
      return MZ_FALSE;
    pRead_buf = (mz_uint8 *)pUser_read_buf;
    read_buf_size = user_read_buf_size;
    read_buf_avail = 0;
    comp_remaining = file_stat.m_comp_size;
  }
  else
  {
    // Temporarily allocate a read buffer.
    read_buf_size = MZ_MIN(file_stat.m_comp_size, MZ_ZIP_MAX_IO_BUF_SIZE);
#ifdef _MSC_VER
    if (((0, sizeof(size_t) == sizeof(mz_uint32))) && (read_buf_size > 0x7FFFFFFF))
#else
    if (((sizeof(size_t) == sizeof(mz_uint32))) && (read_buf_size > 0x7FFFFFFF))
#endif
      return MZ_FALSE;
    if (NULL == (pRead_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, (size_t)read_buf_size)))
      return MZ_FALSE;
    read_buf_avail = 0;
    comp_remaining = file_stat.m_comp_size;
  }

  do
  {
    size_t in_buf_size, out_buf_size = (size_t)(file_stat.m_uncomp_size - out_buf_ofs);
    if ((!read_buf_avail) && (!pZip->m_pState->m_pMem))
    {
      read_buf_avail = MZ_MIN(read_buf_size, comp_remaining);
      if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf, (size_t)read_buf_avail) != read_buf_avail)
      {
        status = TINFL_STATUS_FAILED;
        break;
      }
      cur_file_ofs += read_buf_avail;
      comp_remaining -= read_buf_avail;
      read_buf_ofs = 0;
    }
    in_buf_size = (size_t)read_buf_avail;
    status = tinfl_decompress(&inflator, (mz_uint8 *)pRead_buf + read_buf_ofs, &in_buf_size, (mz_uint8 *)pBuf, (mz_uint8 *)pBuf + out_buf_ofs, &out_buf_size, TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF | (comp_remaining ? TINFL_FLAG_HAS_MORE_INPUT : 0));
    read_buf_avail -= in_buf_size;
    read_buf_ofs += in_buf_size;
    out_buf_ofs += out_buf_size;
  } while (status == TINFL_STATUS_NEEDS_MORE_INPUT);

  if (status == TINFL_STATUS_DONE)
  {
    // Make sure the entire file was decompressed, and check its CRC.
    if ((out_buf_ofs != file_stat.m_uncomp_size) || (mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf, (size_t)file_stat.m_uncomp_size) != file_stat.m_crc32))
      status = TINFL_STATUS_FAILED;
  }

  if ((!pZip->m_pState->m_pMem) && (!pUser_read_buf))
    pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);

  return status == TINFL_STATUS_DONE;
}

mz_bool mz_zip_reader_extract_file_to_mem_no_alloc(mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size, mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size)
{
  int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags);
  if (file_index < 0)
    return MZ_FALSE;
  return mz_zip_reader_extract_to_mem_no_alloc(pZip, file_index, pBuf, buf_size, flags, pUser_read_buf, user_read_buf_size);
}

mz_bool mz_zip_reader_extract_to_mem(mz_zip_archive *pZip, mz_uint file_index, void *pBuf, size_t buf_size, mz_uint flags)
{
  return mz_zip_reader_extract_to_mem_no_alloc(pZip, file_index, pBuf, buf_size, flags, NULL, 0);
}

mz_bool mz_zip_reader_extract_file_to_mem(mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size, mz_uint flags)
{
  return mz_zip_reader_extract_file_to_mem_no_alloc(pZip, pFilename, pBuf, buf_size, flags, NULL, 0);
}

void *mz_zip_reader_extract_to_heap(mz_zip_archive *pZip, mz_uint file_index, size_t *pSize, mz_uint flags)
{
  mz_uint64 comp_size, uncomp_size, alloc_size;
  const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
  void *pBuf;

  if (pSize)
    *pSize = 0;
  if (!p)
    return NULL;

  comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);
  uncomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS);

  alloc_size = (flags & MZ_ZIP_FLAG_COMPRESSED_DATA) ? comp_size : uncomp_size;
#ifdef _MSC_VER
  if (((0, sizeof(size_t) == sizeof(mz_uint32))) && (alloc_size > 0x7FFFFFFF))
#else
  if (((sizeof(size_t) == sizeof(mz_uint32))) && (alloc_size > 0x7FFFFFFF))
#endif
    return NULL;
  if (NULL == (pBuf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, (size_t)alloc_size)))
    return NULL;

  if (!mz_zip_reader_extract_to_mem(pZip, file_index, pBuf, (size_t)alloc_size, flags))
  {
    pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
    return NULL;
  }

  if (pSize) *pSize = (size_t)alloc_size;
  return pBuf;
}

void *mz_zip_reader_extract_file_to_heap(mz_zip_archive *pZip, const char *pFilename, size_t *pSize, mz_uint flags)
{
  int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags);
  if (file_index < 0)
  {
    if (pSize) *pSize = 0;
    return MZ_FALSE;
  }
  return mz_zip_reader_extract_to_heap(pZip, file_index, pSize, flags);
}

mz_bool mz_zip_reader_extract_to_callback(mz_zip_archive *pZip, mz_uint file_index, mz_file_write_func pCallback, void *pOpaque, mz_uint flags)
{
  int status = TINFL_STATUS_DONE; mz_uint file_crc32 = MZ_CRC32_INIT;
  mz_uint64 read_buf_size, read_buf_ofs = 0, read_buf_avail, comp_remaining, out_buf_ofs = 0, cur_file_ofs;
  mz_zip_archive_file_stat file_stat;
  void *pRead_buf = NULL; void *pWrite_buf = NULL;
  mz_uint32 local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) / sizeof(mz_uint32)]; mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32;

  if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat))
    return MZ_FALSE;

  // Empty file, or a directory (but not always a directory - I've seen odd zips with directories that have compressed data which inflates to 0 bytes)
  if (!file_stat.m_comp_size)
    return MZ_TRUE;

  // Entry is a subdirectory (I've seen old zips with dir entries which have compressed deflate data which inflates to 0 bytes, but these entries claim to uncompress to 512 bytes in the headers).
  // I'm torn how to handle this case - should it fail instead?
  if (mz_zip_reader_is_file_a_directory(pZip, file_index))
    return MZ_TRUE;

  // Encryption and patch files are not supported.
  if (file_stat.m_bit_flag & (1 | 32))
    return MZ_FALSE;

  // This function only supports stored and deflate.
  if ((!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (file_stat.m_method != 0) && (file_stat.m_method != MZ_DEFLATED))
    return MZ_FALSE;

  // Read and parse the local directory entry.
  cur_file_ofs = file_stat.m_local_header_ofs;
  if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pLocal_header, MZ_ZIP_LOCAL_DIR_HEADER_SIZE) != MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
    return MZ_FALSE;
  if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG)
    return MZ_FALSE;

  cur_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) + MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS);
  if ((cur_file_ofs + file_stat.m_comp_size) > pZip->m_archive_size)
    return MZ_FALSE;

  // Decompress the file either directly from memory or from a file input buffer.
  if (pZip->m_pState->m_pMem)
  {
    pRead_buf = (mz_uint8 *)pZip->m_pState->m_pMem + cur_file_ofs;
    read_buf_size = read_buf_avail = file_stat.m_comp_size;
    comp_remaining = 0;
  }
  else
  {
    read_buf_size = MZ_MIN(file_stat.m_comp_size, MZ_ZIP_MAX_IO_BUF_SIZE);
    if (NULL == (pRead_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, (size_t)read_buf_size)))
      return MZ_FALSE;
    read_buf_avail = 0;
    comp_remaining = file_stat.m_comp_size;
  }

  if ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) || (!file_stat.m_method))
  {
    // The file is stored or the caller has requested the compressed data.
    if (pZip->m_pState->m_pMem)
    {
#ifdef _MSC_VER
      if (((0, sizeof(size_t) == sizeof(mz_uint32))) && (file_stat.m_comp_size > 0xFFFFFFFF))
#else
      if (((sizeof(size_t) == sizeof(mz_uint32))) && (file_stat.m_comp_size > 0xFFFFFFFF))
#endif
        return MZ_FALSE;
      if (pCallback(pOpaque, out_buf_ofs, pRead_buf, (size_t)file_stat.m_comp_size) != file_stat.m_comp_size)
        status = TINFL_STATUS_FAILED;
      else if (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA))
        file_crc32 = (mz_uint32)mz_crc32(file_crc32, (const mz_uint8 *)pRead_buf, (size_t)file_stat.m_comp_size);
      cur_file_ofs += file_stat.m_comp_size;
      out_buf_ofs += file_stat.m_comp_size;
      comp_remaining = 0;
    }
    else
    {
      while (comp_remaining)
      {
        read_buf_avail = MZ_MIN(read_buf_size, comp_remaining);
        if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf, (size_t)read_buf_avail) != read_buf_avail)
        {
          status = TINFL_STATUS_FAILED;
          break;
        }

        if (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA))
          file_crc32 = (mz_uint32)mz_crc32(file_crc32, (const mz_uint8 *)pRead_buf, (size_t)read_buf_avail);

        if (pCallback(pOpaque, out_buf_ofs, pRead_buf, (size_t)read_buf_avail) != read_buf_avail)
        {
          status = TINFL_STATUS_FAILED;
          break;
        }
        cur_file_ofs += read_buf_avail;
        out_buf_ofs += read_buf_avail;
        comp_remaining -= read_buf_avail;
      }
    }
  }
  else
  {
    tinfl_decompressor inflator;
    tinfl_init(&inflator);

    if (NULL == (pWrite_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, TINFL_LZ_DICT_SIZE)))
      status = TINFL_STATUS_FAILED;
    else
    {
      do
      {
        mz_uint8 *pWrite_buf_cur = (mz_uint8 *)pWrite_buf + (out_buf_ofs & (TINFL_LZ_DICT_SIZE - 1));
        size_t in_buf_size, out_buf_size = TINFL_LZ_DICT_SIZE - (out_buf_ofs & (TINFL_LZ_DICT_SIZE - 1));
        if ((!read_buf_avail) && (!pZip->m_pState->m_pMem))
        {
          read_buf_avail = MZ_MIN(read_buf_size, comp_remaining);
          if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf, (size_t)read_buf_avail) != read_buf_avail)
          {
            status = TINFL_STATUS_FAILED;
            break;
          }
          cur_file_ofs += read_buf_avail;
          comp_remaining -= read_buf_avail;
          read_buf_ofs = 0;
        }

        in_buf_size = (size_t)read_buf_avail;
        status = tinfl_decompress(&inflator, (const mz_uint8 *)pRead_buf + read_buf_ofs, &in_buf_size, (mz_uint8 *)pWrite_buf, pWrite_buf_cur, &out_buf_size, comp_remaining ? TINFL_FLAG_HAS_MORE_INPUT : 0);
        read_buf_avail -= in_buf_size;
        read_buf_ofs += in_buf_size;

        if (out_buf_size)
        {
          if (pCallback(pOpaque, out_buf_ofs, pWrite_buf_cur, out_buf_size) != out_buf_size)
          {
            status = TINFL_STATUS_FAILED;
            break;
          }
          file_crc32 = (mz_uint32)mz_crc32(file_crc32, pWrite_buf_cur, out_buf_size);
          if ((out_buf_ofs += out_buf_size) > file_stat.m_uncomp_size)
          {
            status = TINFL_STATUS_FAILED;
            break;
          }
        }
      } while ((status == TINFL_STATUS_NEEDS_MORE_INPUT) || (status == TINFL_STATUS_HAS_MORE_OUTPUT));
    }
  }

  if ((status == TINFL_STATUS_DONE) && (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)))
  {
    // Make sure the entire file was decompressed, and check its CRC.
    if ((out_buf_ofs != file_stat.m_uncomp_size) || (file_crc32 != file_stat.m_crc32))
      status = TINFL_STATUS_FAILED;
  }

  if (!pZip->m_pState->m_pMem)
    pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
  if (pWrite_buf)
    pZip->m_pFree(pZip->m_pAlloc_opaque, pWrite_buf);

  return status == TINFL_STATUS_DONE;
}

mz_bool mz_zip_reader_extract_file_to_callback(mz_zip_archive *pZip, const char *pFilename, mz_file_write_func pCallback, void *pOpaque, mz_uint flags)
{
  int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags);
  if (file_index < 0)
    return MZ_FALSE;
  return mz_zip_reader_extract_to_callback(pZip, file_index, pCallback, pOpaque, flags);
}

#ifndef MINIZ_NO_STDIO
static size_t mz_zip_file_write_callback(void *pOpaque, mz_uint64 ofs, const void *pBuf, size_t n)
{
  (void)ofs; return MZ_FWRITE(pBuf, 1, n, (MZ_FILE*)pOpaque);
}

mz_bool mz_zip_reader_extract_to_file(mz_zip_archive *pZip, mz_uint file_index, const char *pDst_filename, mz_uint flags)
{
  mz_bool status;
  mz_zip_archive_file_stat file_stat;
  MZ_FILE *pFile;
  if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat))
    return MZ_FALSE;
  pFile = MZ_FOPEN(pDst_filename, "wb");
  if (!pFile)
    return MZ_FALSE;
  status = mz_zip_reader_extract_to_callback(pZip, file_index, mz_zip_file_write_callback, pFile, flags);
  if (MZ_FCLOSE(pFile) == EOF)
    return MZ_FALSE;
#ifndef MINIZ_NO_TIME
  if (status)
    mz_zip_set_file_times(pDst_filename, file_stat.m_time, file_stat.m_time);
#endif
  return status;
}
#endif // #ifndef MINIZ_NO_STDIO

mz_bool mz_zip_reader_end(mz_zip_archive *pZip)
{
  if ((!pZip) || (!pZip->m_pState) || (!pZip->m_pAlloc) || (!pZip->m_pFree) || (pZip->m_zip_mode != MZ_ZIP_MODE_READING))
    return MZ_FALSE;

  if (pZip->m_pState)
  {
    mz_zip_internal_state *pState = pZip->m_pState; pZip->m_pState = NULL;
    mz_zip_array_clear(pZip, &pState->m_central_dir);
    mz_zip_array_clear(pZip, &pState->m_central_dir_offsets);
    mz_zip_array_clear(pZip, &pState->m_sorted_central_dir_offsets);

#ifndef MINIZ_NO_STDIO
    if (pState->m_pFile)
    {
      MZ_FCLOSE(pState->m_pFile);
      pState->m_pFile = NULL;
    }
#endif // #ifndef MINIZ_NO_STDIO

    pZip->m_pFree(pZip->m_pAlloc_opaque, pState);
  }
  pZip->m_zip_mode = MZ_ZIP_MODE_INVALID;

  return MZ_TRUE;
}

#ifndef MINIZ_NO_STDIO
mz_bool mz_zip_reader_extract_file_to_file(mz_zip_archive *pZip, const char *pArchive_filename, const char *pDst_filename, mz_uint flags)
{
  int file_index = mz_zip_reader_locate_file(pZip, pArchive_filename, NULL, flags);
  if (file_index < 0)
    return MZ_FALSE;
  return mz_zip_reader_extract_to_file(pZip, file_index, pDst_filename, flags);
}
#endif

// ------------------- .ZIP archive writing

#ifndef MINIZ_NO_ARCHIVE_WRITING_APIS

static void mz_write_le16(mz_uint8 *p, mz_uint16 v) { p[0] = (mz_uint8)v; p[1] = (mz_uint8)(v >> 8); }
static void mz_write_le32(mz_uint8 *p, mz_uint32 v) { p[0] = (mz_uint8)v; p[1] = (mz_uint8)(v >> 8); p[2] = (mz_uint8)(v >> 16); p[3] = (mz_uint8)(v >> 24); }
#define MZ_WRITE_LE16(p, v) mz_write_le16((mz_uint8 *)(p), (mz_uint16)(v))
#define MZ_WRITE_LE32(p, v) mz_write_le32((mz_uint8 *)(p), (mz_uint32)(v))

mz_bool mz_zip_writer_init(mz_zip_archive *pZip, mz_uint64 existing_size)
{
  if ((!pZip) || (pZip->m_pState) || (!pZip->m_pWrite) || (pZip->m_zip_mode != MZ_ZIP_MODE_INVALID))
    return MZ_FALSE;

  if (pZip->m_file_offset_alignment)
  {
    // Ensure user specified file offset alignment is a power of 2.
    if (pZip->m_file_offset_alignment & (pZip->m_file_offset_alignment - 1))
      return MZ_FALSE;
  }

  if (!pZip->m_pAlloc) pZip->m_pAlloc = def_alloc_func;
  if (!pZip->m_pFree) pZip->m_pFree = def_free_func;
  if (!pZip->m_pRealloc) pZip->m_pRealloc = def_realloc_func;

  pZip->m_zip_mode = MZ_ZIP_MODE_WRITING;
  pZip->m_archive_size = existing_size;
  pZip->m_central_directory_file_ofs = 0;
  pZip->m_total_files = 0;

  if (NULL == (pZip->m_pState = (mz_zip_internal_state *)pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, sizeof(mz_zip_internal_state))))
    return MZ_FALSE;
  memset(pZip->m_pState, 0, sizeof(mz_zip_internal_state));
  MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir, sizeof(mz_uint8));
  MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir_offsets, sizeof(mz_uint32));
  MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_sorted_central_dir_offsets, sizeof(mz_uint32));
  return MZ_TRUE;
}

static size_t mz_zip_heap_write_func(void *pOpaque, mz_uint64 file_ofs, const void *pBuf, size_t n)
{
  mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
  mz_zip_internal_state *pState = pZip->m_pState;
  mz_uint64 new_size = MZ_MAX(file_ofs + n, pState->m_mem_size);
#ifdef _MSC_VER
  if ((!n) || ((0, sizeof(size_t) == sizeof(mz_uint32)) && (new_size > 0x7FFFFFFF)))
#else
  if ((!n) || ((sizeof(size_t) == sizeof(mz_uint32)) && (new_size > 0x7FFFFFFF)))
#endif
    return 0;
  if (new_size > pState->m_mem_capacity)
  {
    void *pNew_block;
    size_t new_capacity = MZ_MAX(64, pState->m_mem_capacity); while (new_capacity < new_size) new_capacity *= 2;
    if (NULL == (pNew_block = pZip->m_pRealloc(pZip->m_pAlloc_opaque, pState->m_pMem, 1, new_capacity)))
      return 0;
    pState->m_pMem = pNew_block; pState->m_mem_capacity = new_capacity;
  }
  memcpy((mz_uint8 *)pState->m_pMem + file_ofs, pBuf, n);
  pState->m_mem_size = (size_t)new_size;
  return n;
}

mz_bool mz_zip_writer_init_heap(mz_zip_archive *pZip, size_t size_to_reserve_at_beginning, size_t initial_allocation_size)
{
  pZip->m_pWrite = mz_zip_heap_write_func;
  pZip->m_pIO_opaque = pZip;
  if (!mz_zip_writer_init(pZip, size_to_reserve_at_beginning))
    return MZ_FALSE;
  if (0 != (initial_allocation_size = MZ_MAX(initial_allocation_size, size_to_reserve_at_beginning)))
  {
    if (NULL == (pZip->m_pState->m_pMem = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, initial_allocation_size)))
    {
      mz_zip_writer_end(pZip);
      return MZ_FALSE;
    }
    pZip->m_pState->m_mem_capacity = initial_allocation_size;
  }
  return MZ_TRUE;
}

#ifndef MINIZ_NO_STDIO
static size_t mz_zip_file_write_func(void *pOpaque, mz_uint64 file_ofs, const void *pBuf, size_t n)
{
  mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
  mz_int64 cur_ofs = MZ_FTELL64(pZip->m_pState->m_pFile);
  if (((mz_int64)file_ofs < 0) || (((cur_ofs != (mz_int64)file_ofs)) && (MZ_FSEEK64(pZip->m_pState->m_pFile, (mz_int64)file_ofs, SEEK_SET))))
    return 0;
  return MZ_FWRITE(pBuf, 1, n, pZip->m_pState->m_pFile);
}

mz_bool mz_zip_writer_init_file(mz_zip_archive *pZip, const char *pFilename, mz_uint64 size_to_reserve_at_beginning)
{
  MZ_FILE *pFile;
  pZip->m_pWrite = mz_zip_file_write_func;
  pZip->m_pIO_opaque = pZip;
  if (!mz_zip_writer_init(pZip, size_to_reserve_at_beginning))
    return MZ_FALSE;
  if (NULL == (pFile = MZ_FOPEN(pFilename, "wb")))
  {
    mz_zip_writer_end(pZip);
    return MZ_FALSE;
  }
  pZip->m_pState->m_pFile = pFile;
  if (size_to_reserve_at_beginning)
  {
    mz_uint64 cur_ofs = 0; char buf[4096]; MZ_CLEAR_OBJ(buf);
    do
    {
      size_t n = (size_t)MZ_MIN(sizeof(buf), size_to_reserve_at_beginning);
      if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_ofs, buf, n) != n)
      {
        mz_zip_writer_end(pZip);
        return MZ_FALSE;
      }
      cur_ofs += n; size_to_reserve_at_beginning -= n;
    } while (size_to_reserve_at_beginning);
  }
  return MZ_TRUE;
}
#endif // #ifndef MINIZ_NO_STDIO

mz_bool mz_zip_writer_init_from_reader(mz_zip_archive *pZip, const char *pFilename)
{
  mz_zip_internal_state *pState;
  if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_READING))
    return MZ_FALSE;
  // No sense in trying to write to an archive that's already at the support max size
  if ((pZip->m_total_files == 0xFFFF) || ((pZip->m_archive_size + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + MZ_ZIP_LOCAL_DIR_HEADER_SIZE) > 0xFFFFFFFF))
    return MZ_FALSE;

  pState = pZip->m_pState;

  if (pState->m_pFile)
  {
#ifdef MINIZ_NO_STDIO
    pFilename; return MZ_FALSE;
#else
    // Archive is being read from stdio - try to reopen as writable.
    if (pZip->m_pIO_opaque != pZip)
      return MZ_FALSE;
    if (!pFilename)
      return MZ_FALSE;
    pZip->m_pWrite = mz_zip_file_write_func;
    if (NULL == (pState->m_pFile = MZ_FREOPEN(pFilename, "r+b", pState->m_pFile)))
    {
      // The mz_zip_archive is now in a bogus state because pState->m_pFile is NULL, so just close it.
      mz_zip_reader_end(pZip);
      return MZ_FALSE;
    }
#endif // #ifdef MINIZ_NO_STDIO
  }
  else if (pState->m_pMem)
  {
    // Archive lives in a memory block. Assume it's from the heap that we can resize using the realloc callback.
    if (pZip->m_pIO_opaque != pZip)
      return MZ_FALSE;
    pState->m_mem_capacity = pState->m_mem_size;
    pZip->m_pWrite = mz_zip_heap_write_func;
  }
  // Archive is being read via a user provided read function - make sure the user has specified a write function too.
  else if (!pZip->m_pWrite)
    return MZ_FALSE;

  // Start writing new files at the archive's current central directory location.
  pZip->m_archive_size = pZip->m_central_directory_file_ofs;
  pZip->m_zip_mode = MZ_ZIP_MODE_WRITING;
  pZip->m_central_directory_file_ofs = 0;

  return MZ_TRUE;
}

mz_bool mz_zip_writer_add_mem(mz_zip_archive *pZip, const char *pArchive_name, const void *pBuf, size_t buf_size, mz_uint level_and_flags)
{
  return mz_zip_writer_add_mem_ex(pZip, pArchive_name, pBuf, buf_size, NULL, 0, level_and_flags, 0, 0);
}

typedef struct
{
  mz_zip_archive *m_pZip;
  mz_uint64 m_cur_archive_file_ofs;
  mz_uint64 m_comp_size;
} mz_zip_writer_add_state;

static mz_bool mz_zip_writer_add_put_buf_callback(const void* pBuf, int len, void *pUser)
{
  mz_zip_writer_add_state *pState = (mz_zip_writer_add_state *)pUser;
  if ((int)pState->m_pZip->m_pWrite(pState->m_pZip->m_pIO_opaque, pState->m_cur_archive_file_ofs, pBuf, len) != len)
    return MZ_FALSE;
  pState->m_cur_archive_file_ofs += len;
  pState->m_comp_size += len;
  return MZ_TRUE;
}

static mz_bool mz_zip_writer_create_local_dir_header(mz_zip_archive *pZip, mz_uint8 *pDst, mz_uint16 filename_size, mz_uint16 extra_size, mz_uint64 uncomp_size, mz_uint64 comp_size, mz_uint32 uncomp_crc32, mz_uint16 method, mz_uint16 bit_flags, mz_uint16 dos_time, mz_uint16 dos_date)
{
  (void)pZip;
  memset(pDst, 0, MZ_ZIP_LOCAL_DIR_HEADER_SIZE);
  MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_SIG_OFS, MZ_ZIP_LOCAL_DIR_HEADER_SIG);
  MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_VERSION_NEEDED_OFS, method ? 20 : 0);
  MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_BIT_FLAG_OFS, bit_flags);
  MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_METHOD_OFS, method);
  MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILE_TIME_OFS, dos_time);
  MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILE_DATE_OFS, dos_date);
  MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_CRC32_OFS, uncomp_crc32);
  MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_COMPRESSED_SIZE_OFS, comp_size);
  MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_DECOMPRESSED_SIZE_OFS, uncomp_size);
  MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILENAME_LEN_OFS, filename_size);
  MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_EXTRA_LEN_OFS, extra_size);
  return MZ_TRUE;
}

static mz_bool mz_zip_writer_create_central_dir_header(mz_zip_archive *pZip, mz_uint8 *pDst, mz_uint16 filename_size, mz_uint16 extra_size, mz_uint16 comment_size, mz_uint64 uncomp_size, mz_uint64 comp_size, mz_uint32 uncomp_crc32, mz_uint16 method, mz_uint16 bit_flags, mz_uint16 dos_time, mz_uint16 dos_date, mz_uint64 local_header_ofs, mz_uint32 ext_attributes)
{
  (void)pZip;
  memset(pDst, 0, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE);
  MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_SIG_OFS, MZ_ZIP_CENTRAL_DIR_HEADER_SIG);
  MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_VERSION_NEEDED_OFS, method ? 20 : 0);
  MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_BIT_FLAG_OFS, bit_flags);
  MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_METHOD_OFS, method);
  MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILE_TIME_OFS, dos_time);
  MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILE_DATE_OFS, dos_date);
  MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_CRC32_OFS, uncomp_crc32);
  MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS, comp_size);
  MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS, uncomp_size);
  MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILENAME_LEN_OFS, filename_size);
  MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_EXTRA_LEN_OFS, extra_size);
  MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_COMMENT_LEN_OFS, comment_size);
  MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS, ext_attributes);
  MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_LOCAL_HEADER_OFS, local_header_ofs);
  return MZ_TRUE;
}

static mz_bool mz_zip_writer_add_to_central_dir(mz_zip_archive *pZip, const char *pFilename, mz_uint16 filename_size, const void *pExtra, mz_uint16 extra_size, const void *pComment, mz_uint16 comment_size, mz_uint64 uncomp_size, mz_uint64 comp_size, mz_uint32 uncomp_crc32, mz_uint16 method, mz_uint16 bit_flags, mz_uint16 dos_time, mz_uint16 dos_date, mz_uint64 local_header_ofs, mz_uint32 ext_attributes)
{
  mz_zip_internal_state *pState = pZip->m_pState;
  mz_uint32 central_dir_ofs = (mz_uint32)pState->m_central_dir.m_size;
  size_t orig_central_dir_size = pState->m_central_dir.m_size;
  mz_uint8 central_dir_header[MZ_ZIP_CENTRAL_DIR_HEADER_SIZE];

  // No zip64 support yet
  if ((local_header_ofs > 0xFFFFFFFF) || (((mz_uint64)pState->m_central_dir.m_size + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + filename_size + extra_size + comment_size) > 0xFFFFFFFF))
    return MZ_FALSE;

  if (!mz_zip_writer_create_central_dir_header(pZip, central_dir_header, filename_size, extra_size, comment_size, uncomp_size, comp_size, uncomp_crc32, method, bit_flags, dos_time, dos_date, local_header_ofs, ext_attributes))
    return MZ_FALSE;

  if ((!mz_zip_array_push_back(pZip, &pState->m_central_dir, central_dir_header, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE)) ||
      (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pFilename, filename_size)) ||
      (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pExtra, extra_size)) ||
      (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pComment, comment_size)) ||
      (!mz_zip_array_push_back(pZip, &pState->m_central_dir_offsets, &central_dir_ofs, 1)))
  {
    // Try to push the central directory array back into its original state.
    mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size, MZ_FALSE);
    return MZ_FALSE;
  }

  return MZ_TRUE;
}

static mz_bool mz_zip_writer_validate_archive_name(const char *pArchive_name)
{
  // Basic ZIP archive filename validity checks: Valid filenames cannot start with a forward slash, cannot contain a drive letter, and cannot use DOS-style backward slashes.
  if (*pArchive_name == '/')
    return MZ_FALSE;
  while (*pArchive_name)
  {
    if ((*pArchive_name == '\\') || (*pArchive_name == ':'))
      return MZ_FALSE;
    pArchive_name++;
  }
  return MZ_TRUE;
}

static mz_uint mz_zip_writer_compute_padding_needed_for_file_alignment(mz_zip_archive *pZip)
{
  mz_uint32 n;
  if (!pZip->m_file_offset_alignment)
    return 0;
  n = (mz_uint32)(pZip->m_archive_size & (pZip->m_file_offset_alignment - 1));
  return (pZip->m_file_offset_alignment - n) & (pZip->m_file_offset_alignment - 1);
}

static mz_bool mz_zip_writer_write_zeros(mz_zip_archive *pZip, mz_uint64 cur_file_ofs, mz_uint32 n)
{
  char buf[4096];
  memset(buf, 0, MZ_MIN(sizeof(buf), n));
  while (n)
  {
    mz_uint32 s = MZ_MIN(sizeof(buf), n);
    if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_file_ofs, buf, s) != s)
      return MZ_FALSE;
    cur_file_ofs += s; n -= s;
  }
  return MZ_TRUE;
}

mz_bool mz_zip_writer_add_mem_ex(mz_zip_archive *pZip, const char *pArchive_name, const void *pBuf, size_t buf_size, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags, mz_uint64 uncomp_size, mz_uint32 uncomp_crc32)
{
  mz_uint16 method = 0, dos_time = 0, dos_date = 0;
  mz_uint level, ext_attributes = 0, num_alignment_padding_bytes;
  mz_uint64 local_dir_header_ofs = pZip->m_archive_size, cur_archive_file_ofs = pZip->m_archive_size, comp_size = 0;
  size_t archive_name_size;
  mz_uint8 local_dir_header[MZ_ZIP_LOCAL_DIR_HEADER_SIZE];
  tdefl_compressor *pComp = NULL;
  mz_bool store_data_uncompressed;
  mz_zip_internal_state *pState;

  if ((int)level_and_flags < 0)
    level_and_flags = MZ_DEFAULT_LEVEL;
  level = level_and_flags & 0xF;
  store_data_uncompressed = ((!level) || (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA));

  if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) || ((buf_size) && (!pBuf)) || (!pArchive_name) || ((comment_size) && (!pComment)) || (pZip->m_total_files == 0xFFFF) || (level > MZ_UBER_COMPRESSION))
    return MZ_FALSE;

  pState = pZip->m_pState;

  if ((!(level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (uncomp_size))
    return MZ_FALSE;
  // No zip64 support yet
  if ((buf_size > 0xFFFFFFFF) || (uncomp_size > 0xFFFFFFFF))
    return MZ_FALSE;
  if (!mz_zip_writer_validate_archive_name(pArchive_name))
    return MZ_FALSE;

#ifndef MINIZ_NO_TIME
  {
    time_t cur_time; time(&cur_time);
    mz_zip_time_to_dos_time(cur_time, &dos_time, &dos_date);
  }
#endif // #ifndef MINIZ_NO_TIME

  archive_name_size = strlen(pArchive_name);
  if (archive_name_size > 0xFFFF)
    return MZ_FALSE;

  num_alignment_padding_bytes = mz_zip_writer_compute_padding_needed_for_file_alignment(pZip);

  // no zip64 support yet
  if ((pZip->m_total_files == 0xFFFF) || ((pZip->m_archive_size + num_alignment_padding_bytes + MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + comment_size + archive_name_size) > 0xFFFFFFFF))
    return MZ_FALSE;

  if ((archive_name_size) && (pArchive_name[archive_name_size - 1] == '/'))
  {
    // Set DOS Subdirectory attribute bit.
    ext_attributes |= 0x10;
    // Subdirectories cannot contain data.
    if ((buf_size) || (uncomp_size))
      return MZ_FALSE;
  }

  // Try to do any allocations before writing to the archive, so if an allocation fails the file remains unmodified. (A good idea if we're doing an in-place modification.)
  if ((!mz_zip_array_ensure_room(pZip, &pState->m_central_dir, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + archive_name_size + comment_size)) || (!mz_zip_array_ensure_room(pZip, &pState->m_central_dir_offsets, 1)))
    return MZ_FALSE;

  if ((!store_data_uncompressed) && (buf_size))
  {
    if (NULL == (pComp = (tdefl_compressor *)pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, sizeof(tdefl_compressor))))
      return MZ_FALSE;
  }

  if (!mz_zip_writer_write_zeros(pZip, cur_archive_file_ofs, num_alignment_padding_bytes + sizeof(local_dir_header)))
  {
    pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
    return MZ_FALSE;
  }
  local_dir_header_ofs += num_alignment_padding_bytes;
  if (pZip->m_file_offset_alignment) { MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) == 0); }
  cur_archive_file_ofs += num_alignment_padding_bytes + sizeof(local_dir_header);

  MZ_CLEAR_OBJ(local_dir_header);
  if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pArchive_name, archive_name_size) != archive_name_size)
  {
    pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
    return MZ_FALSE;
  }
  cur_archive_file_ofs += archive_name_size;

  if (!(level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA))
  {
    uncomp_crc32 = (mz_uint32)mz_crc32(MZ_CRC32_INIT, (const mz_uint8*)pBuf, buf_size);
    uncomp_size = buf_size;
    if (uncomp_size <= 3)
    {
      level = 0;
      store_data_uncompressed = MZ_TRUE;
    }
  }

  if (store_data_uncompressed)
  {
    if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pBuf, buf_size) != buf_size)
    {
      pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
      return MZ_FALSE;
    }

    cur_archive_file_ofs += buf_size;
    comp_size = buf_size;

    if (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)
      method = MZ_DEFLATED;
  }
  else if (buf_size)
  {
    mz_zip_writer_add_state state;

    state.m_pZip = pZip;
    state.m_cur_archive_file_ofs = cur_archive_file_ofs;
    state.m_comp_size = 0;

    if ((tdefl_init(pComp, mz_zip_writer_add_put_buf_callback, &state, tdefl_create_comp_flags_from_zip_params(level, -15, MZ_DEFAULT_STRATEGY)) != TDEFL_STATUS_OKAY) ||
        (tdefl_compress_buffer(pComp, pBuf, buf_size, TDEFL_FINISH) != TDEFL_STATUS_DONE))
    {
      pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
      return MZ_FALSE;
    }

    comp_size = state.m_comp_size;
    cur_archive_file_ofs = state.m_cur_archive_file_ofs;

    method = MZ_DEFLATED;
  }

  pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
  pComp = NULL;

  // no zip64 support yet
  if ((comp_size > 0xFFFFFFFF) || (cur_archive_file_ofs > 0xFFFFFFFF))
    return MZ_FALSE;

  if (!mz_zip_writer_create_local_dir_header(pZip, local_dir_header, (mz_uint16)archive_name_size, 0, uncomp_size, comp_size, uncomp_crc32, method, 0, dos_time, dos_date))
    return MZ_FALSE;

  if (pZip->m_pWrite(pZip->m_pIO_opaque, local_dir_header_ofs, local_dir_header, sizeof(local_dir_header)) != sizeof(local_dir_header))
    return MZ_FALSE;

  if (!mz_zip_writer_add_to_central_dir(pZip, pArchive_name, (mz_uint16)archive_name_size, NULL, 0, pComment, comment_size, uncomp_size, comp_size, uncomp_crc32, method, 0, dos_time, dos_date, local_dir_header_ofs, ext_attributes))
    return MZ_FALSE;

  pZip->m_total_files++;
  pZip->m_archive_size = cur_archive_file_ofs;

  return MZ_TRUE;
}

#ifndef MINIZ_NO_STDIO
mz_bool mz_zip_writer_add_file(mz_zip_archive *pZip, const char *pArchive_name, const char *pSrc_filename, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags)
{
  mz_uint uncomp_crc32 = MZ_CRC32_INIT, level, num_alignment_padding_bytes;
  mz_uint16 method = 0, dos_time = 0, dos_date = 0, ext_attributes = 0;
  mz_uint64 local_dir_header_ofs = pZip->m_archive_size, cur_archive_file_ofs = pZip->m_archive_size, uncomp_size = 0, comp_size = 0;
  size_t archive_name_size;
  mz_uint8 local_dir_header[MZ_ZIP_LOCAL_DIR_HEADER_SIZE];
  MZ_FILE *pSrc_file = NULL;

  if ((int)level_and_flags < 0)
    level_and_flags = MZ_DEFAULT_LEVEL;
  level = level_and_flags & 0xF;

  if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) || (!pArchive_name) || ((comment_size) && (!pComment)) || (level > MZ_UBER_COMPRESSION))
    return MZ_FALSE;
  if (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)
    return MZ_FALSE;
  if (!mz_zip_writer_validate_archive_name(pArchive_name))
    return MZ_FALSE;

  archive_name_size = strlen(pArchive_name);
  if (archive_name_size > 0xFFFF)
    return MZ_FALSE;

  num_alignment_padding_bytes = mz_zip_writer_compute_padding_needed_for_file_alignment(pZip);

  // no zip64 support yet
  if ((pZip->m_total_files == 0xFFFF) || ((pZip->m_archive_size + num_alignment_padding_bytes + MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + comment_size + archive_name_size) > 0xFFFFFFFF))
    return MZ_FALSE;

  if (!mz_zip_get_file_modified_time(pSrc_filename, &dos_time, &dos_date))
    return MZ_FALSE;
    
  pSrc_file = MZ_FOPEN(pSrc_filename, "rb");
  if (!pSrc_file)
    return MZ_FALSE;
  MZ_FSEEK64(pSrc_file, 0, SEEK_END);
  uncomp_size = MZ_FTELL64(pSrc_file);
  MZ_FSEEK64(pSrc_file, 0, SEEK_SET);

  if (uncomp_size > 0xFFFFFFFF)
  {
    // No zip64 support yet
    MZ_FCLOSE(pSrc_file);
    return MZ_FALSE;
  }
  if (uncomp_size <= 3)
    level = 0;

  if (!mz_zip_writer_write_zeros(pZip, cur_archive_file_ofs, num_alignment_padding_bytes + sizeof(local_dir_header)))
  {
    MZ_FCLOSE(pSrc_file);
    return MZ_FALSE;
  }
  local_dir_header_ofs += num_alignment_padding_bytes;
  if (pZip->m_file_offset_alignment) { MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) == 0); }
  cur_archive_file_ofs += num_alignment_padding_bytes + sizeof(local_dir_header);

  MZ_CLEAR_OBJ(local_dir_header);
  if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pArchive_name, archive_name_size) != archive_name_size)
  {
    MZ_FCLOSE(pSrc_file);
    return MZ_FALSE;
  }
  cur_archive_file_ofs += archive_name_size;

  if (uncomp_size)
  {
    mz_uint64 uncomp_remaining = uncomp_size;
    void *pRead_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, MZ_ZIP_MAX_IO_BUF_SIZE);
    if (!pRead_buf)
    {
      MZ_FCLOSE(pSrc_file);
      return MZ_FALSE;
    }

    if (!level)
    {
      while (uncomp_remaining)
      {
        mz_uint n = (mz_uint)MZ_MIN(MZ_ZIP_MAX_IO_BUF_SIZE, uncomp_remaining);
        if ((MZ_FREAD(pRead_buf, 1, n, pSrc_file) != n) || (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pRead_buf, n) != n))
        {
          pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
          MZ_FCLOSE(pSrc_file);
          return MZ_FALSE;
        }
        uncomp_crc32 = (mz_uint32)mz_crc32(uncomp_crc32, (const mz_uint8 *)pRead_buf, n);
        uncomp_remaining -= n;
        cur_archive_file_ofs += n;
      }
      comp_size = uncomp_size;
    }
    else
    {
      mz_bool result = MZ_FALSE;
      mz_zip_writer_add_state state;
      tdefl_compressor *pComp = (tdefl_compressor *)pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, sizeof(tdefl_compressor));
      if (!pComp)
      {
        pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
        MZ_FCLOSE(pSrc_file);
        return MZ_FALSE;
      }

      state.m_pZip = pZip;
      state.m_cur_archive_file_ofs = cur_archive_file_ofs;
      state.m_comp_size = 0;

      if (tdefl_init(pComp, mz_zip_writer_add_put_buf_callback, &state, tdefl_create_comp_flags_from_zip_params(level, -15, MZ_DEFAULT_STRATEGY)) != TDEFL_STATUS_OKAY)
      {
        pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
        pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
        MZ_FCLOSE(pSrc_file);
        return MZ_FALSE;
      }

      for ( ; ; )
      {
        size_t in_buf_size = (mz_uint32)MZ_MIN(uncomp_remaining, MZ_ZIP_MAX_IO_BUF_SIZE);
        tdefl_status status;

        if (MZ_FREAD(pRead_buf, 1, in_buf_size, pSrc_file) != in_buf_size)
          break;

        uncomp_crc32 = (mz_uint32)mz_crc32(uncomp_crc32, (const mz_uint8 *)pRead_buf, in_buf_size);
        uncomp_remaining -= in_buf_size;

        status = tdefl_compress_buffer(pComp, pRead_buf, in_buf_size, uncomp_remaining ? TDEFL_NO_FLUSH : TDEFL_FINISH);
        if (status == TDEFL_STATUS_DONE)
        {
          result = MZ_TRUE;
          break;
        }
        else if (status != TDEFL_STATUS_OKAY)
          break;
      }

      pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);

      if (!result)
      {
        pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
        MZ_FCLOSE(pSrc_file);
        return MZ_FALSE;
      }

      comp_size = state.m_comp_size;
      cur_archive_file_ofs = state.m_cur_archive_file_ofs;

      method = MZ_DEFLATED;
    }

    pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
  }

  MZ_FCLOSE(pSrc_file); pSrc_file = NULL;

  // no zip64 support yet
  if ((comp_size > 0xFFFFFFFF) || (cur_archive_file_ofs > 0xFFFFFFFF))
    return MZ_FALSE;

  if (!mz_zip_writer_create_local_dir_header(pZip, local_dir_header, (mz_uint16)archive_name_size, 0, uncomp_size, comp_size, uncomp_crc32, method, 0, dos_time, dos_date))
    return MZ_FALSE;

  if (pZip->m_pWrite(pZip->m_pIO_opaque, local_dir_header_ofs, local_dir_header, sizeof(local_dir_header)) != sizeof(local_dir_header))
    return MZ_FALSE;

  if (!mz_zip_writer_add_to_central_dir(pZip, pArchive_name, (mz_uint16)archive_name_size, NULL, 0, pComment, comment_size, uncomp_size, comp_size, uncomp_crc32, method, 0, dos_time, dos_date, local_dir_header_ofs, ext_attributes))
    return MZ_FALSE;

  pZip->m_total_files++;
  pZip->m_archive_size = cur_archive_file_ofs;

  return MZ_TRUE;
}
#endif // #ifndef MINIZ_NO_STDIO

mz_bool mz_zip_writer_add_from_zip_reader(mz_zip_archive *pZip, mz_zip_archive *pSource_zip, mz_uint file_index)
{
  mz_uint n, bit_flags, num_alignment_padding_bytes;
  mz_uint64 comp_bytes_remaining, local_dir_header_ofs;
  mz_uint64 cur_src_file_ofs, cur_dst_file_ofs;
  mz_uint32 local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) / sizeof(mz_uint32)]; mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32;
  mz_uint8 central_header[MZ_ZIP_CENTRAL_DIR_HEADER_SIZE];
  size_t orig_central_dir_size;
  mz_zip_internal_state *pState;
  void *pBuf; const mz_uint8 *pSrc_central_header;

  if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING))
    return MZ_FALSE;
  if (NULL == (pSrc_central_header = mz_zip_reader_get_cdh(pSource_zip, file_index)))
    return MZ_FALSE;
  pState = pZip->m_pState;

  num_alignment_padding_bytes = mz_zip_writer_compute_padding_needed_for_file_alignment(pZip);

  // no zip64 support yet
  if ((pZip->m_total_files == 0xFFFF) || ((pZip->m_archive_size + num_alignment_padding_bytes + MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE) > 0xFFFFFFFF))
    return MZ_FALSE;

  cur_src_file_ofs = MZ_READ_LE32(pSrc_central_header + MZ_ZIP_CDH_LOCAL_HEADER_OFS);
  cur_dst_file_ofs = pZip->m_archive_size;

  if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, pLocal_header, MZ_ZIP_LOCAL_DIR_HEADER_SIZE) != MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
    return MZ_FALSE;
  if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG)
    return MZ_FALSE;
  cur_src_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE;

  if (!mz_zip_writer_write_zeros(pZip, cur_dst_file_ofs, num_alignment_padding_bytes))
    return MZ_FALSE;
  cur_dst_file_ofs += num_alignment_padding_bytes;
  local_dir_header_ofs = cur_dst_file_ofs;
  if (pZip->m_file_offset_alignment) { MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) == 0); }

  if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pLocal_header, MZ_ZIP_LOCAL_DIR_HEADER_SIZE) != MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
    return MZ_FALSE;
  cur_dst_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE;

  n = MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) + MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS);
  comp_bytes_remaining = n + MZ_READ_LE32(pSrc_central_header + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);

  if (NULL == (pBuf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, (size_t)MZ_MAX(sizeof(mz_uint32) * 4, MZ_MIN(MZ_ZIP_MAX_IO_BUF_SIZE, comp_bytes_remaining)))))
    return MZ_FALSE;

  while (comp_bytes_remaining)
  {
    n = (mz_uint)MZ_MIN(MZ_ZIP_MAX_IO_BUF_SIZE, comp_bytes_remaining);
    if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, pBuf, n) != n)
    {
      pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
      return MZ_FALSE;
    }
    cur_src_file_ofs += n;

    if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pBuf, n) != n)
    {
      pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
      return MZ_FALSE;
    }
    cur_dst_file_ofs += n;

    comp_bytes_remaining -= n;
  }

  bit_flags = MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_BIT_FLAG_OFS);
  if (bit_flags & 8)
  {
    // Copy data descriptor
    if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, pBuf, sizeof(mz_uint32) * 4) != sizeof(mz_uint32) * 4)
    {
      pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
      return MZ_FALSE;
    }

    n = sizeof(mz_uint32) * ((MZ_READ_LE32(pBuf) == 0x08074b50) ? 4 : 3);
    if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pBuf, n) != n)
    {
      pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
      return MZ_FALSE;
    }

    cur_src_file_ofs += n;
    cur_dst_file_ofs += n;
  }
  pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);

  // no zip64 support yet
  if (cur_dst_file_ofs > 0xFFFFFFFF)
    return MZ_FALSE;

  orig_central_dir_size = pState->m_central_dir.m_size;

  memcpy(central_header, pSrc_central_header, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE);
  MZ_WRITE_LE32(central_header + MZ_ZIP_CDH_LOCAL_HEADER_OFS, local_dir_header_ofs);
  if (!mz_zip_array_push_back(pZip, &pState->m_central_dir, central_header, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE))
    return MZ_FALSE;

  n = MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_FILENAME_LEN_OFS) + MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_EXTRA_LEN_OFS) + MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_COMMENT_LEN_OFS);
  if (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pSrc_central_header + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n))
  {
    mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size, MZ_FALSE);
    return MZ_FALSE;
  }

  if (pState->m_central_dir.m_size > 0xFFFFFFFF)
    return MZ_FALSE;
  n = (mz_uint32)orig_central_dir_size;
  if (!mz_zip_array_push_back(pZip, &pState->m_central_dir_offsets, &n, 1))
  {
    mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size, MZ_FALSE);
    return MZ_FALSE;
  }

  pZip->m_total_files++;
  pZip->m_archive_size = cur_dst_file_ofs;

  return MZ_TRUE;
}

mz_bool mz_zip_writer_finalize_archive(mz_zip_archive *pZip)
{
  mz_zip_internal_state *pState;
  mz_uint64 central_dir_ofs, central_dir_size;
  mz_uint8 hdr[MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE];

  if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING))
    return MZ_FALSE;

  pState = pZip->m_pState;

  // no zip64 support yet
  if ((pZip->m_total_files > 0xFFFF) || ((pZip->m_archive_size + pState->m_central_dir.m_size + MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) > 0xFFFFFFFF))
    return MZ_FALSE;

  central_dir_ofs = 0;
  central_dir_size = 0;
  if (pZip->m_total_files)
  {
    // Write central directory
    central_dir_ofs = pZip->m_archive_size;
    central_dir_size = pState->m_central_dir.m_size;
    pZip->m_central_directory_file_ofs = central_dir_ofs;
    if (pZip->m_pWrite(pZip->m_pIO_opaque, central_dir_ofs, pState->m_central_dir.m_p, (size_t)central_dir_size) != central_dir_size)
      return MZ_FALSE;
    pZip->m_archive_size += central_dir_size;
  }

  // Write end of central directory record
  MZ_CLEAR_OBJ(hdr);
  MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_SIG_OFS, MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG);
  MZ_WRITE_LE16(hdr + MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS, pZip->m_total_files);
  MZ_WRITE_LE16(hdr + MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS, pZip->m_total_files);
  MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_CDIR_SIZE_OFS, central_dir_size);
  MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_CDIR_OFS_OFS, central_dir_ofs);

  if (pZip->m_pWrite(pZip->m_pIO_opaque, pZip->m_archive_size, hdr, sizeof(hdr)) != sizeof(hdr))
    return MZ_FALSE;
#ifndef MINIZ_NO_STDIO
  if ((pState->m_pFile) && (MZ_FFLUSH(pState->m_pFile) == EOF))
    return MZ_FALSE;
#endif // #ifndef MINIZ_NO_STDIO

  pZip->m_archive_size += sizeof(hdr);

  pZip->m_zip_mode = MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED;
  return MZ_TRUE;
}

mz_bool mz_zip_writer_finalize_heap_archive(mz_zip_archive *pZip, void **pBuf, size_t *pSize)
{
  if ((!pZip) || (!pZip->m_pState) || (!pBuf) || (!pSize))
    return MZ_FALSE;
  if (pZip->m_pWrite != mz_zip_heap_write_func)
    return MZ_FALSE;
  if (!mz_zip_writer_finalize_archive(pZip))
    return MZ_FALSE;

  *pBuf = pZip->m_pState->m_pMem;
  *pSize = pZip->m_pState->m_mem_size;
  pZip->m_pState->m_pMem = NULL;
  pZip->m_pState->m_mem_size = pZip->m_pState->m_mem_capacity = 0;
  return MZ_TRUE;
}

mz_bool mz_zip_writer_end(mz_zip_archive *pZip)
{
  mz_zip_internal_state *pState;
  mz_bool status = MZ_TRUE;
  if ((!pZip) || (!pZip->m_pState) || (!pZip->m_pAlloc) || (!pZip->m_pFree) || ((pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) && (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED)))
    return MZ_FALSE;

  pState = pZip->m_pState;
  pZip->m_pState = NULL;
  mz_zip_array_clear(pZip, &pState->m_central_dir);
  mz_zip_array_clear(pZip, &pState->m_central_dir_offsets);
  mz_zip_array_clear(pZip, &pState->m_sorted_central_dir_offsets);

#ifndef MINIZ_NO_STDIO
  if (pState->m_pFile)
  {
    MZ_FCLOSE(pState->m_pFile);
    pState->m_pFile = NULL;
  }
#endif // #ifndef MINIZ_NO_STDIO

  if ((pZip->m_pWrite == mz_zip_heap_write_func) && (pState->m_pMem))
  {
    pZip->m_pFree(pZip->m_pAlloc_opaque, pState->m_pMem);
    pState->m_pMem = NULL;
  }

  pZip->m_pFree(pZip->m_pAlloc_opaque, pState);
  pZip->m_zip_mode = MZ_ZIP_MODE_INVALID;
  return status;
}

#ifndef MINIZ_NO_STDIO
mz_bool mz_zip_add_mem_to_archive_file_in_place(const char *pZip_filename, const char *pArchive_name, const void *pBuf, size_t buf_size, const void *pComment, mz_uint16 comment_size, mz_uint level_and_flags)
{
  mz_bool status, created_new_archive = MZ_FALSE;
  mz_zip_archive zip_archive;
  struct MZ_FILE_STAT_STRUCT file_stat;
  MZ_CLEAR_OBJ(zip_archive);
  if ((int)level_and_flags < 0)
     level_and_flags = MZ_DEFAULT_LEVEL;
  if ((!pZip_filename) || (!pArchive_name) || ((buf_size) && (!pBuf)) || ((comment_size) && (!pComment)) || ((level_and_flags & 0xF) > MZ_UBER_COMPRESSION))
    return MZ_FALSE;
  if (!mz_zip_writer_validate_archive_name(pArchive_name))
    return MZ_FALSE;
  if (MZ_FILE_STAT(pZip_filename, &file_stat) != 0)
  {
    // Create a new archive.
    if (!mz_zip_writer_init_file(&zip_archive, pZip_filename, 0))
      return MZ_FALSE;
    created_new_archive = MZ_TRUE;
  }
  else
  {
    // Append to an existing archive.
    if (!mz_zip_reader_init_file(&zip_archive, pZip_filename, level_and_flags | MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY))
      return MZ_FALSE;
    if (!mz_zip_writer_init_from_reader(&zip_archive, pZip_filename))
    {
      mz_zip_reader_end(&zip_archive);
      return MZ_FALSE;
    }
  }
  status = mz_zip_writer_add_mem_ex(&zip_archive, pArchive_name, pBuf, buf_size, pComment, comment_size, level_and_flags, 0, 0);
  // Always finalize, even if adding failed for some reason, so we have a valid central directory. (This may not always succeed, but we can try.)
  if (!mz_zip_writer_finalize_archive(&zip_archive))
    status = MZ_FALSE;
  if (!mz_zip_writer_end(&zip_archive))
    status = MZ_FALSE;
  if ((!status) && (created_new_archive))
  {
    // It's a new archive and something went wrong, so just delete it.
    int ignoredStatus = MZ_DELETE_FILE(pZip_filename);
    (void)ignoredStatus;
  }
  return status;
}

void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename, const char *pArchive_name, size_t *pSize, mz_uint flags)
{
  int file_index;
  mz_zip_archive zip_archive;
  void *p = NULL;

  if (pSize)
    *pSize = 0;

  if ((!pZip_filename) || (!pArchive_name))
    return NULL;

  MZ_CLEAR_OBJ(zip_archive);
  if (!mz_zip_reader_init_file(&zip_archive, pZip_filename, flags | MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY))
    return NULL;

  if ((file_index = mz_zip_reader_locate_file(&zip_archive, pArchive_name, NULL, flags)) >= 0)
    p = mz_zip_reader_extract_to_heap(&zip_archive, file_index, pSize, flags);

  mz_zip_reader_end(&zip_archive);
  return p;
}

#endif // #ifndef MINIZ_NO_STDIO

#endif // #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS

#endif // #ifndef MINIZ_NO_ARCHIVE_APIS

#ifdef __cplusplus
}
#endif

#endif // MINIZ_HEADER_FILE_ONLY

/*
  This is free and unencumbered software released into the public domain.

  Anyone is free to copy, modify, publish, use, compile, sell, or
  distribute this software, either in source code form or as a compiled
  binary, for any purpose, commercial or non-commercial, and by any
  means.

  In jurisdictions that recognize copyright laws, the author or authors
  of this software dedicate any and all copyright interest in the
  software to the public domain. We make this dedication for the benefit
  of the public at large and to the detriment of our heirs and
  successors. We intend this dedication to be an overt act of
  relinquishment in perpetuity of all present and future rights to this
  software under copyright law.

  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
  IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  OTHER DEALINGS IN THE SOFTWARE.

  For more information, please refer to <http://unlicense.org/>
*/