all repos — litestore @ 9cdae4f65883217af04ec93b9310bff1e5eafebc

A minimalist nosql document store.

lib/utils.nim

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
import json, db_sqlite, strutils, pegs, asyncdispatch, asynchttpserver2, times, logging, math, sqlite3
import types, queries, contenttypes

proc dbQuote*(s: string): string =
  result = "'"
  for c in items(s):
    if c == '\'': add(result, "''")
    else: add(result, c)
  add(result, '\'')

proc currentTime*(): string =
  return getTime().getGMTime().format("yyyy-MM-dd'T'hh:mm:ss'Z'")

proc selectDocumentsByTags(tags: string): string =
  var select_tagged = "SELECT document_id FROM tags WHERE tag_id = '"
  result = ""
  for tag in tags.split(','):
    if not tag.match(PEG_TAG):
      raise newException(EInvalidTag, "Invalid tag '$1'" % tag)
    result = result & "AND id IN (" & select_tagged & tag & "') "
   
proc prepareSelectDocumentsQuery*(options: var QueryOptions): string =
  result = "SELECT "
  if options.search.len > 0:
    if options.select[0] != "COUNT(id)":
      options.select.add("snippet(searchcontents) AS highlight")
      options.select.add("rank(matchinfo(searchcontents, 'pcxnal'), 1.20, 0.75, 5.0, 0.5) AS rank")
      options.orderby = "rank DESC"
    result = result & options.select.join(", ")
    result = result & " FROM documents, searchcontents "
    result = result & "WHERE documents.id = searchcontents.document_id "
  else:
    result = result & options.select.join(", ")
    result = result & " FROM documents WHERE 1=1 "
  if options.single:
    result = result & "AND id = ?"
  if options.tags.len > 0:
    result = result & options.tags.selectDocumentsByTags()
  if options.search.len > 0:
    result = result & "AND searchcontents MATCH '" & options.search.replace("'", "''") & "' "
  if options.orderby.len > 0 and options.select[0] != "COUNT(id)":
    result = result & "ORDER BY " & options.orderby & " " 
  if options.limit > 0:
    result = result & "LIMIT " & $options.limit & " "
    if options.offset > 0:
      result = result & "OFFSET " & $options.offset & " "
  debug(result.replace("$", "$$"))

proc prepareSelectTagsQuery*(options: QueryOptions): string =
  result = "SELECT tag_id, COUNT(document_ID) "
  result = result & "FROM tags "
  if options.single:
    result = result & "WHERE tag_id = ?"
  result = result & "GROUP BY tag_id"
  if options.orderby.len > 0:
    result = result & "ORDER BY " & options.orderby&" " 
  if options.limit > 0:
    result = result & "LIMIT " & $options.limit & " "
  debug(result.replace("$", "$$"))

proc prepareJsonDocument*(store:Datastore, doc: TRow, cols:seq[string]): JsonNode =
  var raw_tags = store.db.getAllRows(SQL_SELECT_DOCUMENT_TAGS, doc[0])
  var tags = newSeq[JsonNode](0)
  for tag in raw_tags:
    tags.add(%($(tag[0])))
  if doc.len == 1:
    # COUNT(id)
    return %(doc[0].parseInt)
  var res = newSeq[tuple[key: string, val: JsonNode]](0)
  var count = 0
  for s in cols:
    var key = s
    if s.contains(" "):
      let chunks = s.split(" ")
      key = chunks[chunks.len-1]
    res.add((key, %doc[count]))
    count.inc
  res.add(("tags", %tags))
  return %res

proc toPlainText*(s: string): string =
  var tags = peg"""'<' [^<>]+ '>'"""
  var markup = peg"""{[_*/+!=?%$^~]+} {(!$1 .)+} $1"""
  return s.replace(tags).replacef(markup, "$2")

proc checkIfBinary*(binary:int, contenttype:string): int =
  if binary == -1 and contenttype.isBinary:
    return 1
  else:
    return binary

proc addDocumentSystemTags*(store: Datastore, docid, contenttype: string) =
  var splittype = contenttype.split("/")
  var tags = newSeq[string](0)
  tags.add "$type:"&splittype[0]
  tags.add "$subtype:"&splittype[1]
  var binary = checkIfBinary(-1, contenttype)
  if binary == 1:
    tags.add "$format:binary"
  else:
    tags.add "$format:text"
  for tag in tags:
    store.db.exec(SQL_INSERT_TAG, tag, docid)

proc destroyDocumentSystemTags*(store: Datastore, docid) = 
  store.db.exec(SQL_DELETE_DOCUMENT_SYSTEM_TAGS, docid)

proc fail*(code, msg) =
  stderr.writeln(msg)
  quit(code)

proc resError*(code: HttpCode, message: string, trace = ""): Response =
  warn(message.replace("$", "$$"))
  if trace.len > 0:
    debug(trace.replace("$", "$$"))
  result.code = code
  result.content = """{"error":"$1"}""" % message
  result.headers = ctJsonHeader()

proc resDocumentNotFound*(id): Response =
  resError(Http404, "Document '$1' not found." % id)

#  Created by Joshua Wilson on 27/05/14.
#  Copyright (c) 2014 Joshua Wilson. All rights reserved.
#  https://github.com/neozenith/sqlite-okapi-bm25
#
# This is an extension to the work of "Radford 'rads' Smith"
# found at: https://github.com/rads/sqlite-okapi-bm25
# which is covered by the MIT License
# http://opensource.org/licenses/MIT
# the following code shall also be covered by the same MIT License
proc okapi_bm25f_kb*(pCtx: Pcontext, nVal: int32, apVal: PValueArg) {.cdecl.} =
  var matchinfo = cast[ptr uarray[int32]](value_blob(apVal[0]))
  # Setting the default values and ignoring argument based inputs so the extra
  # arguments can be the column weights instead.
  if nVal < 2:
    pCtx.result_error("wrong number of arguments to function okapi_bm25_kb(), expected k1 parameter", -1)
  if nVal < 3: 
    pCtx.result_error("wrong number of arguments to function okapi_bm25_kb(), expected b parameter", -1);
  let K1 = value_double(apVal[1]) # 1.2
  let B = value_double(apVal[2])  # 0.75
  # For a good explanation fo the maths and how to choose these variables
  # http://stackoverflow.com/a/23161886/622276
  # NOTE: the rearranged order of parameters to match the order presented on
  # SQLite3 FTS3 documentation 'pcxnals' (http://www.sqlite.org/fts3.html#matchinfo)
  let P_OFFSET = 0
  let C_OFFSET = 1
  let X_OFFSET = 2
  let termCount = matchinfo[P_OFFSET].int32
  let colCount = matchinfo[C_OFFSET].int32
  let N_OFFSET = X_OFFSET + 3*termCount*colCount
  let A_OFFSET = N_OFFSET + 1
  let L_OFFSET = A_OFFSET + colCount
  let totalDocs = matchinfo[N_OFFSET].float
  var avgLength:float = 0.0 
  var docLength:float = 0.0 
  for col in 0..colCount-1:
    avgLength = avgLength + matchinfo[A_OFFSET + col].float
    docLength = docLength + matchinfo[L_OFFSET + col].float
  var epsilon = 1.0 / (totalDocs*avgLength)
  var sum = 0.0;
  for i in 0..termCount-1:
    for col in 0..colCount-1:
      let currentX = X_OFFSET + (3 *  col * (i + 1))
      let termFrequency = matchinfo[currentX].float
      let docsWithTerm = matchinfo[currentX + 2].float
      var idf: float = ln((totalDocs - docsWithTerm + 0.5) / (docsWithTerm + 0.5))
      # "...terms appearing in more than half of the corpus will provide negative contributions to the final document score."
      # http://en.wikipedia.org/wiki/Okapi_BM25
      idf = if idf < 0: epsilon else: idf
      var rightSide: float = (termFrequency * (K1 + 1)) / (termFrequency + (K1 * (1 - B + (B * (docLength / avgLength)))))
      rightSide = rightSide+1.0
      # To comply with BM25+ that solves a lower bounding issue where large documents that match are unfairly scored as
      # having similar relevancy as short documents that do not contain as many terms
      # Yuanhua Lv and ChengXiang Zhai. 'Lower-bounding term frequency normalization.' In Proceedings of CIKM'2011, pages 7-16.
      # http://sifaka.cs.uiuc.edu/~ylv2/pub/cikm11-lowerbound.pdf
      let weight:float = if nVal > col+3: value_double(apVal[col+3]) else: 1.0
      sum = sum + (idf * rightSide) * weight
  pCtx.result_double(sum)