lib/utils.nim
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import json, db_sqlite, strutils, pegs, asyncdispatch, asynchttpserver2, times, logging, math, sqlite3 import types, queries, contenttypes proc dbg*(args: varargs[string, `$`]) = if logging.level <= lvlDebug: echo "DEBUG - "&args.join(" ") proc dbQuote*(s: string): string = result = "'" for c in items(s): if c == '\'': add(result, "''") else: add(result, c) add(result, '\'') proc currentTime*(): string = return getTime().getGMTime().format("yyyy-MM-dd'T'hh:mm:ss'Z'") proc selectDocumentsByTags(tags: string): string = var select_tagged = "SELECT document_id FROM tags WHERE tag_id = '" result = "" for tag in tags.split(','): if not tag.match(PEG_TAG): raise newException(EInvalidTag, "Invalid tag '$1'" % tag) result = result & "AND id IN (" & select_tagged & tag & "') " proc prepareSelectDocumentsQuery*(options: var QueryOptions): string = result = "SELECT " if options.search.len > 0: if options.select[0] != "COUNT(id)": options.select.add("snippet(searchcontents) AS highlight") options.select.add("rank(matchinfo(searchcontents, 'pcxnal'), 1.20, 0.75, 5.0, 0.5) AS rank") options.orderby = "rank DESC" result = result & options.select.join(", ") result = result & " FROM documents, searchcontents " result = result & "WHERE documents.id = searchcontents.document_id " else: result = result & options.select.join(", ") result = result & " FROM documents WHERE 1=1 " if options.single: result = result & "AND id = ?" if options.tags.len > 0: result = result & options.tags.selectDocumentsByTags() if options.search.len > 0: result = result & "AND searchcontents MATCH '" & options.search.replace("'", "''") & "' " if options.orderby.len > 0 and options.select[0] != "COUNT(id)": result = result & "ORDER BY " & options.orderby & " " if options.limit > 0: result = result & "LIMIT " & $options.limit & " " if options.offset > 0: result = result & "OFFSET " & $options.offset & " " dbg(result) proc prepareSelectTagsQuery*(options: QueryOptions): string = result = "SELECT tag_id, COUNT(document_ID) " result = result & "FROM tags " if options.single: result = result & "WHERE tag_id = ?" result = result & "GROUP BY tag_id" if options.orderby.len > 0: result = result & "ORDER BY " & options.orderby&" " if options.limit > 0: result = result & "LIMIT " & $options.limit & " " dbg(result) proc prepareJsonDocument*(store:Datastore, doc: TRow, cols:seq[string]): JsonNode = var raw_tags = store.db.getAllRows(SQL_SELECT_DOCUMENT_TAGS, doc[0]) var tags = newSeq[JsonNode](0) for tag in raw_tags: tags.add(%($(tag[0]))) if doc.len == 1: # COUNT(id) return %(doc[0].parseInt) var res = newSeq[tuple[key: string, val: JsonNode]](0) var count = 0 for s in cols: var key = s if s.contains(" "): let chunks = s.split(" ") key = chunks[chunks.len-1] res.add((key, %doc[count])) count.inc res.add(("tags", %tags)) return %res proc toPlainText*(s: string): string = let subs = @[ (pattern: peg"""\<\/?[^<>]+\>""", repl: ""), (pattern: peg"""{[_*/+!=?%$^-]+} {(!$1 .)+} $1""", repl: "$2") ] return s.parallelReplace(subs) proc checkIfBinary*(binary:int, contenttype:string): int = if binary == -1 and contenttype.isBinary: return 1 else: return binary proc addDocumentSystemTags*(store: Datastore, docid, contenttype: string) = var splittype = contenttype.split("/") var tags = newSeq[string](0) tags.add "$type:"&splittype[0] tags.add "$subtype:"&splittype[1] var binary = checkIfBinary(-1, contenttype) if binary == 1: tags.add "$format:binary" else: tags.add "$format:text" for tag in tags: store.db.exec(SQL_INSERT_TAG, tag, docid) proc destroyDocumentSystemTags*(store: Datastore, docid) = store.db.exec(SQL_DELETE_DOCUMENT_SYSTEM_TAGS, docid) proc fail*(code, msg) = stderr.writeln(msg) quit(code) proc resError*(code: HttpCode, message: string, trace = ""): Response = warn(message) if trace.len > 0: dbg(trace) result.code = code result.content = """{"error":"$1"}""" % message result.headers = ctJsonHeader() proc resDocumentNotFound*(id): Response = resError(Http404, "Document '$1' not found." % id) # Created by Joshua Wilson on 27/05/14. # Copyright (c) 2014 Joshua Wilson. All rights reserved. # https://github.com/neozenith/sqlite-okapi-bm25 # # This is an extension to the work of "Radford 'rads' Smith" # found at: https://github.com/rads/sqlite-okapi-bm25 # which is covered by the MIT License # http://opensource.org/licenses/MIT # the following code shall also be covered by the same MIT License proc okapi_bm25f_kb*(pCtx: Pcontext, nVal: int32, apVal: PValueArg) {.cdecl.} = var matchinfo = cast[ptr uarray[int32]](value_blob(apVal[0])) # Setting the default values and ignoring argument based inputs so the extra # arguments can be the column weights instead. if nVal < 2: pCtx.result_error("wrong number of arguments to function okapi_bm25_kb(), expected k1 parameter", -1) if nVal < 3: pCtx.result_error("wrong number of arguments to function okapi_bm25_kb(), expected b parameter", -1); let K1 = value_double(apVal[1]) # 1.2 let B = value_double(apVal[2]) # 0.75 # For a good explanation fo the maths and how to choose these variables # http://stackoverflow.com/a/23161886/622276 # NOTE: the rearranged order of parameters to match the order presented on # SQLite3 FTS3 documentation 'pcxnals' (http://www.sqlite.org/fts3.html#matchinfo) let P_OFFSET = 0 let C_OFFSET = 1 let X_OFFSET = 2 let termCount = matchinfo[P_OFFSET].int32 let colCount = matchinfo[C_OFFSET].int32 let N_OFFSET = X_OFFSET + 3*termCount*colCount let A_OFFSET = N_OFFSET + 1 let L_OFFSET = A_OFFSET + colCount let totalDocs = matchinfo[N_OFFSET].float var avgLength:float = 0.0 var docLength:float = 0.0 for col in 0..colCount-1: avgLength = avgLength + matchinfo[A_OFFSET + col].float docLength = docLength + matchinfo[L_OFFSET + col].float var epsilon = 1.0 / (totalDocs*avgLength) var sum = 0.0; for i in 0..termCount-1: for col in 0..colCount-1: let currentX = X_OFFSET + (3 * col * (i + 1)) let termFrequency = matchinfo[currentX].float let docsWithTerm = matchinfo[currentX + 2].float var idf: float = ln((totalDocs - docsWithTerm + 0.5) / (docsWithTerm + 0.5)) # "...terms appearing in more than half of the corpus will provide negative contributions to the final document score." # http://en.wikipedia.org/wiki/Okapi_BM25 idf = if idf < 0: epsilon else: idf var rightSide: float = (termFrequency * (K1 + 1)) / (termFrequency + (K1 * (1 - B + (B * (docLength / avgLength))))) rightSide = rightSide+1.0 # To comply with BM25+ that solves a lower bounding issue where large documents that match are unfairly scored as # having similar relevancy as short documents that do not contain as many terms # Yuanhua Lv and ChengXiang Zhai. 'Lower-bounding term frequency normalization.' In Proceedings of CIKM'2011, pages 7-16. # http://sifaka.cs.uiuc.edu/~ylv2/pub/cikm11-lowerbound.pdf let weight:float = if nVal > col+3: value_double(apVal[col+3]) else: 1.0 sum = sum + (idf * rightSide) * weight pCtx.result_double(sum) |