src/utils.c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
#ifndef HEX_H #include "hex.h" #endif //////////////////////////////////////// // Helper Functions // //////////////////////////////////////// #if defined(__EMSCRIPTEN__) #include <emscripten.h> EM_ASYNC_JS(char *, em_fgets, (const char *buf, size_t bufsize), { return await new Promise(function(resolve, reject) { if (Module.pending_lines.length > 0) { resolve(Module.pending_lines.shift()); } else { Module.pending_fgets.push(resolve); } }) .then(function(s) { // convert JS string to WASM string let l = s.length + 1; if (l >= bufsize) { // truncate l = bufsize - 1; } Module.stringToUTF8(s.slice(0, l), buf, l); return buf; }); }); #endif void hex_rpad(const char *str, int total_length) { int len = strlen(str); printf("%s", str); for (int i = len; i < total_length; i++) { printf(" "); } } void hex_lpad(const char *str, int total_length) { int len = strlen(str); for (int i = len; i < total_length; i++) { printf(" "); } printf("%s", str); } char *hex_itoa(int num, int base) { static char str[20]; int i = 0; // Handle 0 explicitly, otherwise empty string is printed if (num == 0) { str[i++] = '0'; str[i] = '\0'; return str; } // Process each digit while (num != 0) { int rem = num % base; str[i++] = (rem > 9) ? (rem - 10) + 'a' : rem + '0'; num = num / base; } str[i] = '\0'; // Null-terminate string // Reverse the string int start = 0; int end = i - 1; while (start < end) { char temp = str[start]; str[start] = str[end]; str[end] = temp; start++; end--; } return str; } char *hex_itoa_dec(int num) { return hex_itoa(num, 10); } char *hex_itoa_hex(int num) { return hex_itoa(num, 16); } void hex_raw_print_item(FILE *stream, hex_item_t item) { switch (item.type) { case HEX_TYPE_INTEGER: fprintf(stream, "0x%x", item.data.int_value); break; case HEX_TYPE_STRING: fprintf(stream, "%s", item.data.str_value); break; case HEX_TYPE_USER_SYMBOL: case HEX_TYPE_NATIVE_SYMBOL: fprintf(stream, "%s", item.token->value); break; case HEX_TYPE_QUOTATION: fprintf(stream, "("); for (size_t i = 0; i < item.quotation_size; i++) { if (i > 0) { fprintf(stream, " "); } hex_print_item(stream, *item.data.quotation_value[i]); } fprintf(stream, ")"); break; case HEX_TYPE_INVALID: fprintf(stream, "<invalid>"); break; default: fprintf(stream, "<unknown>"); break; } } void hex_encode_length(uint8_t **bytecode, size_t *size, size_t length) { while (length >= 0x80) { (*bytecode)[*size] = (length & 0x7F) | 0x80; length >>= 7; (*size)++; } (*bytecode)[*size] = length & 0x7F; (*size)++; } int hex_is_binary(const uint8_t *data, size_t size) { const double binary_threshold = 0.1; // 10% of bytes being non-printable size_t non_printable_count = 0; for (size_t i = 0; i < size; i++) { uint8_t byte = data[i]; // Check if the byte is a printable ASCII character or a common control character. if (!((byte >= 32 && byte <= 126) || byte == 9 || byte == 10 || byte == 13)) { non_printable_count++; } // Early exit if the threshold is exceeded. if ((double)non_printable_count / size > binary_threshold) { return 1; } } return 0; } void hex_print_string(FILE *stream, char *value) { fprintf(stream, "\""); for (char *c = value; *c != '\0'; c++) { switch (*c) { case '\n': fprintf(stream, "\\n"); break; case '\t': fprintf(stream, "\\t"); break; case '\r': fprintf(stream, "\\r"); break; case '\b': fprintf(stream, "\\b"); break; case '\f': fprintf(stream, "\\f"); break; case '\v': fprintf(stream, "\\v"); break; case '\\': fprintf(stream, "\\\\"); break; case '\"': fprintf(stream, "\\\""); break; default: fputc(*c, stream); break; } } fprintf(stream, "\""); } void hex_print_item(FILE *stream, hex_item_t item) { switch (item.type) { case HEX_TYPE_INTEGER: fprintf(stream, "0x%x", item.data.int_value); break; case HEX_TYPE_STRING: hex_print_string(stream, item.data.str_value); break; case HEX_TYPE_USER_SYMBOL: case HEX_TYPE_NATIVE_SYMBOL: fprintf(stream, "%s", item.token->value); break; case HEX_TYPE_QUOTATION: fprintf(stream, "("); for (size_t i = 0; i < item.quotation_size; i++) { if (i > 0) { fprintf(stream, " "); } hex_print_item(stream, *item.data.quotation_value[i]); } fprintf(stream, ")"); break; case HEX_TYPE_INVALID: fprintf(stream, "<invalid>"); break; default: fprintf(stream, "<unknown>"); break; } } char *hex_bytes_to_string(const uint8_t *bytes, size_t size) { char *str = (char *)malloc(size * 6 + 1); // Allocate enough space for worst case (\uXXXX format) if (!str) { return NULL; // Allocation failed } char *ptr = str; for (size_t i = 0; i < size; i++) { uint8_t byte = bytes[i]; switch (byte) { case '\n': *ptr++ = '\\'; *ptr++ = 'n'; break; case '\t': *ptr++ = '\\'; *ptr++ = 't'; break; case '\r': if (i + 1 < size && bytes[i + 1] == '\n') { i++; // Skip the '\n' part of the '\r\n' sequence } *ptr++ = '\\'; *ptr++ = 'r'; break; case '\b': *ptr++ = '\\'; *ptr++ = 'b'; break; case '\f': *ptr++ = '\\'; *ptr++ = 'f'; break; case '\v': *ptr++ = '\\'; *ptr++ = 'v'; break; case '\\': *ptr++ = '\\'; break; case '\"': *ptr++ = '\\'; *ptr++ = '\"'; break; default: *ptr++ = byte; break; } } *ptr = '\0'; return str; } char *hex_process_string(const char *value) { int len = strlen(value); char *processed_str = (char *)malloc(len + 1); if (!processed_str) { return NULL; } char *dst = processed_str; const char *src = value; while (*src) { if (*src == '\\' && *(src + 1)) { src++; switch (*src) { case 'n': *dst++ = '\n'; break; case 't': *dst++ = '\t'; break; case 'r': *dst++ = '\r'; break; case 'b': *dst++ = '\b'; break; case 'f': *dst++ = '\f'; break; case 'v': *dst++ = '\v'; break; case '\"': *dst++ = '\"'; break; default: *dst++ = '\\'; *dst++ = *src; break; } } else { *dst++ = *src; } src++; } *dst = '\0'; return processed_str; } size_t hex_min_bytes_to_encode_integer(int32_t value) { // If value is negative, we need to return 4 bytes because we must preserve the sign bits. if (value < 0) { return 4; } // For positive values, check the minimal number of bytes needed. for (int bytes = 1; bytes <= 4; bytes++) { int32_t mask = (1 << (bytes * 8)) - 1; int32_t truncated_value = value & mask; // If the truncated value is equal to the original, this is the minimal byte size if (truncated_value == value) { return bytes; } } return 4; // Default to 4 bytes if no smaller size is found. } |