all repos — hex @ 821d9dfec5f72f1f2a7f62aae0d2effb55e14ada

A tiny, minimalist, slightly-esoteric concatenative programming lannguage.

web/contents/spec.html

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
<article>
    <h2>Specification</h2>
    <nav>
        <ul>
            <li><a href="#syntax">Syntax</a>
                <ul>
                    <li><a href="#comments">Comments</a>
                    <li><a href="#integer-literals">Integer Literals</a></li>
                    <li><a href="#string-literals">String Literals</a></li>
                    <li><a href="#quotation-literals">Quotation Literals</a></li>
                    <li><a href="#symbol-identifiers">Symbol Identifiers</a></li>
                </ul>
            </li>
            <li><a href="#data-types">Data Types</a>
                <ul>
                    <li><a href="#integers">Integers</a></li>
                    <li><a href="#strings">Strings</a></li>
                    <li><a href="#quotations">Quotations</a></li>
                    <li><a href="#symbols">Symbols</a></li>
                </ul>
            </li>
            <li><a href="#stack">Stack</a>
                <ul>
                    <li><a href="#pushing-literals">Pushing Literals</a></li>
                    <li><a href="#pushing-symbols">Pushing Symbols</a></li>
                </ul>
            </li>
            <li><a href="#registry">Registry</a></li>
            <li><a href="#hbx">Hex Bytecode eXecutable (HBX) Format</a>
                <ul>
                    <li><a href="#bytecode-header">Bytecode Header</a></li>
                    <li><a href="#bytecode-symbol-table">Bytecode Symbol Table</a></li>
                    <li><a href="#bytecode">Bytecode Program</a></li>
                    <li><a href="#bytecode-example">Full Bytecode Example</a></li>
                </ul>
            </li>
            <li><a href="#native-symbols">Native Symbol Reference</a>
                <ul>
                    <li><a href="#memory-management-symbols">Memory Management Symbols</a></li>
                    <li><a href="#control-flow-symbols">Control Flow Symbols</a></li>
                    <li><a href="#stack-management-symbols">Stack Management Symbols</a></li>
                    <li><a href="#evaluation-symbols">Evaluation Symbols</a></li>
                    <li><a href="#arithmetic-symbols">Arithmetic Symbols</a></li>
                    <li><a href="#bitwise-operations-symbols">Bitwise Operations Symbols</a></li>
                    <li><a href="#comparisons-symbols">Comparisons Symbols</a></li>
                    <li><a href="#boolean-logic-symbols">Boolean Logic Symbols</a></li>
                    <li><a href="#type-checking-and-conversion-symbols">Type Checking and Conversion Symbols</a></li>
                    <li><a href="#list-symbols">List (Strings and Quotations) Symbols</a></li>
                    <li><a href="#input-output-symbols">Input/Output Symbols</a></li>
                    <li><a href="#file-symbols">File Symbols</a></li>
                    <li><a href="#shell-symbols">Shell Symbols</a></li>
                </ul>
            </li>
        </ul>
    </nav>


    <h3 id="introduction">Introduction<a href="#top"></a></h3>
    <p><strong>hex</strong> is a minimalist, concatenative, stack-based programming language designed for experimenting
        with the concatenative programming paradigm. It is inspired by the <a href="https://min-lang.org"
            target="_blank">min</a> programming language and aims to provide a small yet powerful language for creating
        short scripts and automating common tasks.</p>
    <p>hex supports 32-bit integers (written only in hexadecimal format), strings, and quotations (lists). It features
        a set of built-in symbols that implement arithmetic operations, boolean logic, bitwise operations, comparison of
        integers, I/O operations, file manipulation, external process execution, and stack manipulation. The language is
        fully homoiconic, meaning that everything in hex is data.</p>
    <p>hex was created with simplicity in mind, both in its implementation and usage. The language's design encourages a
        minimalist
        approach, focusing on essential features and avoiding unnecessary complexity.</p>
    <h3 id="syntax">Syntax<a href="#top"></a></h3>
    <p>The syntax of hex is designed to be simple and intuitive, following the principles of concatenative programming.
        In hex, programs are composed of sequences of literals and symbols, which are evaluated from left to right.</p>
    <p>
        Literals push values onto the stack, while symbols manipulate the stack or perform operations. There are no
        explicit control structures; instead, hex relies on stack manipulation and quotations to achieve flow control
        and data management. Symbols in hex can be used to store values globally, providing a way to manage state across
        different parts of a program.</p>
    <p>hex programs are written as sequences of whitespace-separated tokens. Tokens can be literals, symbols, or
        comments.</p>
    <p>This is an example of a simple hex program:</p>
    <pre><code>    $; Filters a quotation to keep only the even numbers$$
    ($0x2$$ $0x3$$ $0x4$$ $0x5$$ $0x6$$) ($0x2$$ $:%$$ $0x0$$ $:==$$) $:filter$$</code></pre>
    <p>This example includes:</p>
    <ul>
        <li>One single-line comment: <code>$; Filters a quotation to keep only the even numbers$$</code></li>
        <li>Two quotations: <code>($0x2$$ $0x3$$ $0x4$$ $0x5$$ $0x6$$)</code> and
            <code>($0x2$$ $:%$$ $0x0$$ $:==$$)</code>
        </li>
        <li>Three symbols: <code>$:%$$</code>, <code>$:==$$</code>, and <code>$:filter$$</code></li>
    </ul>
    <h4 id="comments">Comments<a href="#top"></a></h4>

    <p>Comments in hex are used to annotate code and are ignored during execution. There are two types of comments:
        single-line comments and multi-line comments.</p>

    <h5 id="single-line-comments">Single-line Comments<a href="#top"></a></h5>
    <p>Single-line comments start with a semicolon (<code>;</code>) and continue until the end of the line. Everything
        after the semicolon is ignored.</p>
    <p>Example:</p>
    <pre><code>    $; This is a single-line comment$$
    $0x2$$ $0x3$$ $:+$$ $; This adds 0x2 and 0x3$</code></pre>

    <h5 id="multi-line-comments">Multi-line Comments<a href="#top"></a></h5>
    <p>Multi-line comments start with <code>#|</code> and end with <code>|#</code>. Everything between these markers is
        ignored, allowing comments to span multiple lines.</p>
    <p>Example:</p>
    <pre><code>    $#|
      This is a multi-line comment
      It can span multiple lines
    |#$
    $0x2$$ $0x3$$ $:+$$ $#| This adds 0x2 and 0x3 |#$</code></pre>
    <h4 id="integer-literals">Integer Literals<a href="#top"></a></h4>
    <p>Integer literals in hex are always written in hexadecimal form, prefixed with <code>0x</code>. They can contain
        up to 8 hexadecimal digits, representing 32-bit integers. Hexadecimal digits include the numbers
        <code>0-9</code> and the letters <code>>a-f</code> (or <code>A-F</code>), which correspond to the decimal values
        10-15.
    </p>
    <p>Integers in hex can be positive or negative, and are implemented using <a
            href="https://en.wikipedia.org/wiki/Two%27s_complement" target="_blank">two's complement</a> representation.
        For more information on two's complement, see .</p>
    <p>Examples:</p>
    <ul>
        <li><code>$0x1$$</code> represents the decimal value 1.</li>
        <li><code>$0xa$$</code> represents the decimal value 10.</li>
        <li><code>$0x1f$$</code> represents the decimal value 31.</li>
        <li><code>$0xffffffff$$</code> represents the decimal value -1 (in two's complement).</li>
    </ul>
    <p>Integers are case-insensitive; typically, lowercase letters are preferred but not mandatory.</p>
    <h4 id="string-literals">String Literals<a href="#top"></a></h4>
    <p>String literals in hex are delimited by double quotes (<code>"</code>). They can contain any character except for
        a newline, meaning that strings must be on a single line. To include special characters within a string, hex
        supports the following escape codes:</p>
    <ul>
        <li><code>&#92;n</code> - Newline</li>
        <li><code>&#92;t</code> - Tab</li>
        <li><code>&#92;r</code> - Carriage return</li>
        <li><code>&#92;b</code> - Backspace</li>
        <li><code>&#92;f</code> - Form feed</li>
        <li><code>&#92;v</code> - Vertical tab</li>
        <li><code>&#92;&#92;</code> - Backslash</li>
        <li><code>&#92;"</code> - Double quote</li>
    </ul>
    <p>Example:</p>
    <pre><code>$"Hello, World!&bsol;nThis is a new line."$$</code></pre>
    <h4 id="quotation-literals">Quotation Literals<a href="#top"></a></h4>
    <p>Quotations in hex are delimited by parentheses (they must start with <code>(</code> and end with <code>)</code>).
        They can contain integers, strings, symbols, and
        even other quotations, allowing for nested structures.</p>
    <p>Examples:</p>
    <ul>
        <li><code>($0x1$$ $0x2$$ $0x3$$)</code> - A quotation containing three integer literals.</li>
        <li><code>($0x1$$ $"hello"$$ ($0x2$$ $0x3$$))</code> - A nested quotation containing an integer, a string, and
            another
            quotation.</li>
    </ul>
    <p>Unlike string literals, quotations can span multiple lines, making them suitable for representing complex data
        structures and control flow mechanisms.</p>
    <h4 id="symbol-identifiers">Symbol Identifiers<a href="#top"></a></h4>
    <p>Symbol identifiers in hex are used to represent built-in native symbols and user-defined symbols.</p>
    <p>There are 0x40 (64) <a href="#native-symbols">native symbols</a> in hex, and some of them contain special
        characters like <code>==</code> or <code>.</code></p>
    <p>Instead, user-defined symbols:</p>
    <ul>
        <li>must start with a letter (<code>a-z</code> or <code>A-Z</code>) or an underscore (<code>_</code>)</li>
        <li>can contain additional letters (<code>a-z</code> or <code>A-Z</code>), digits (<code>0-9</code>), dashes
            (<code>-</code>) and underscores (<code>_</code>)</li>
    </ul>
    <p>Symbols are case-sensitive.</p>
    <h3 id="data-types">Data Types<a href="#top"></a></h3>
    <p>hex supports the following data types:</p>
    <ul>
        <li><a href="#integers">Integers</a> &mdash; 32-bit signed integers represented in hexadecimal form.</li>
        <li><a href="#strings">Strings</a> &mdash; Sequences of characters delimited by double quotes.</li>
        <li><a href="#quotations">Quotations</a> &mdash; Lists of literals, symbols, and other quotations delimited by
            parentheses.</li>
        <li><a href="#symbols">Symbols</a> &mdash; Identifiers representing native or user-defined symbols.</li>
    </ul>
    <h4 id="integers">Integers<a href="#top"></a></h4>
    <p>Integers in hex are 32-bit signed values represented in hexadecimal form. They can be positive or negative (using
        two's complement), and range from <code>-2,147,483,647</code> (<code>-2<sup>31</sup></code>) and
        <code>2,147,483,647</code> (<code>2<sup>31</sup> - 1</code>)
    </p>
    <p>Integers are written using the prefix <code>$0x$$</code> followed by up to 8 hexadecimal digits.</p>
    <p>hex integers are case-insensitive, meaning that <code>$0x1f$$</code> and
        <code><span class="hex-integer">0X1F</span></code> are equivalent
        (however, lowercase letters are preferred).
    </p>
    computations.</p>
    <p>Because hex has no boolean data type, $0x0$$ is assumed to be false, and any other integer value is assumed to be
        true.</p>
    <p>Examples:</p>
    <ul>
        <li><code>$0x1$$</code> &mdash; Represents the decimal value 1.</li>
        <li><code>$0xffffffff$$</code> &mdash; Represents the decimal value -1.</li>
        <li><code>$0x10$$</code> &mdash; Represents the decimal value 16.</li>
    </ul>
    <h4 id="strings">Strings<a href="#top"></a></h4>
    <p>Strings in hex are sequences of characters delimited by double quotes (<code>"</code>). They can contain any
        character except for a newline character, and special characters can be escaped using backslashes.</p>
    <p>Strings are used to represent textual data and can be manipulated using various string manipulation symbols in
        hex.</p>
    <p>Examples:</p>
    <ul>
        <li><code>$"Hello, World!"$$</code> &mdash; Represents the string <code>Hello, World!</code>.</li>
        <li><code>$"This is a string with a newline:&bsol;nSecond line."$$</code> &mdash; Represents a string with a
            newline character.</li>
    </ul>
    <h4 id="quotations">Quotations<a href="#top"></a></h4>
    <p>Quotations in hex are lists of literals (including other quotations) and symbols delimited by parentheses
        (<code>(</code>
        and <code>)</code>). They are used to represent structured data and are a fundamental part of the language's
        syntax.</p>
    <p>An important thing to remember about quotations is that any symbol contained in them will not be executed, and
        this is a fundamental property of hex and other concatenative programming languages, because it means that
        quotation effectively acts as code blocks, holding code that can be executed later on using appropriate
        dequoting symbols.</p>
    <p>Consider the following example:</p>
    <pre><code>    $0x0$$ $"t-count"$$ $::$$
    ($:t-count$$ $0xa$$ $:&lt;$$)
        (
            $:t-count$$ $:puts$$
            $:t-count$$ $0x1$$ $:+$$ $"t-count"$$ $::$$
        )
    $:while$$
    $"t-count"$$ $:#$$</code></pre>
    <p>This example defines a symbol <code>$:t-count$$</code> that counts from 0 to 9 and prints each number to the
        standard
        output. The quotation <code>($:t-count$$ $0xa$$ $:&lt;$$)</code> is used to check if the count is less than 10,
        and the
        <code>$:while$$</code> symbol repeats the process until the condition is no longer met.
    </p>
    <p>In this case, the first two quotations are first pushed on the stack, and the the <code>$:while$$</code> symbols
        perform the dequoting necessary to implement the expected control flow.</p>
    <h4 id="symbols">Symbols<a href="#top"></a></h4>
    <p>In hex there native symbols and user-defined symbols. Native symbols are
        built-in functions that perform specific operations, while user-defined symbols are created by the user to store
        values or define custom behavior.</p>
    <p>hex provides 64 ($0x40$$) native symbols that cover a wide range of functionality, including arithmetic
        operations, control flow, I/O operations, file manipulation, and stack manipulation.</p>
    <p>You can think of symbols as both functions that manipulate the <a href="#stack">stack</a>, or
        variables that can be used to store literal values.</p>
    <p>While native symbol identifiers sometimes are comprised of special characters, like {{sym-==}}, user-defined
        symbol identifier must adhere to
        <a href="symbol-identifiers">specific rules</a>.
    </p>
    <p>All symbols are stored in a single <a href="#registry">registry</a>, implemented as a simple dictionary.
        Therefore, all symbols in hex are global, and not lexically scoped. The main driver for this is to keep the
        language as simple as possible.</p>
    <p>You can store your own symbols and free them using the <a href="#memory-management-symbols">memory management
            symbols</a> provided natively. However, native symbols <em>cannot</em> be freed.</p>
    <h3 id="stack">Stack<a href="#top"></a></h3>
    <p>The stack is a fundamental data structure in hex that holds values and controls the flow of execution. hex is a
        stack-based language, meaning that all operations are performed on a stack of values. The order according to
        which items are added (pushed) to or removed (popped) from the stack is <abbr
            title="Last In, First Out">LIFO</abbr>.</p>
    <p>In the canonical implementation, the hex stack can contain up to 256 items. If you try to push more items on the
        stack, a stack overflow error will be raised and the program will terminate. While this may seem a relatively
        low number, it is important to note that typically there will not be more than 5-10 items on the stack at any
        time, because typically symbols are used to frequently pop them out of the stacks.</p>
    <h4 id="pushing-literals">Pushing Literals<a href="#top"></a></h4>
    <p>Literals are values that are directly pushed onto the stack. In hex, literals can be integers, strings, or
        quotations. When a literal is encountered in a hex program, it is pushed onto the stack for further processing.
    </p>
    <p>Examples:</p>
    <ul>
        <li><code>$0x1$$</code> &mdash; Pushes the integer 1 onto the stack.</li>
        <li><code>$"Hello, World!"$$</code> &mdash; Pushes the string <code>Hello, World!</code> onto the stack.</li>
        <li><code>($0x1$$ $0x2$$ $0x3$$)</code> &mdash; Pushes the quotation <code>($0x1$$ $0x2$$ $0x3$$)</code> onto
            the stack.
        </li>
    </ul>
    <h4 id="pushing-symbols">Pushing Symbols<a href="#top"></a></h4>
    <p>Symbols in hex are used to represent native or user-defined functions and values. When a symbol is encountered in
        a hex program, it is looked up in the registry, and its associated value or function is pushed onto the stack.
    </p>
    <p>Native symbols can perform manipulations on the stack; they can pop values from the stack and push values back
        in.</p>
    <p>In the canonical implementation, native symbols are implemented as native C functions that are executed whenever the corresponding native symbol is pushed on the stack.</p>
    <p>By contrast, you can only store hex literals as user-defined symbols. When storing a quotation as a symbol, it can be used as data (a list of values) or  a portion of an hex program which that can then
        be <em>dequoted</em> through symbols like {{sym-.}}, which pushes all the items in a quotations
        on the stack, one by one.</p>
    <p>Consider the following example hex program:</p>
    <pre><code>    ($:dup$$ $:*$$ $:*$$) $"square"$$ $::$$
    $0x3$$ $:square$$ $:.$$ $:puts$$ $; prints 9$$</code></pre>
    <p>This program defines a symbol $:square$$ that can be used to calculate the square value of an integer, using the
        symbol {{sym-:}}. From then on, if $:square$$ is found anywhere in the same hex program, it
        will be substituted with <code>($:*$$ $:*$$)</code>. However, this is not enough to calculate the square value,
        because the logic to do so is in a quotation. To "execute" (dequote) a quotation, you must use the {{sym-.}}
        symbol, which pushes all the items in the quotation on the stack, which is equivalent
        to the following program:</p>
    <pre><code>    $0x3$$ $:dup$$ $:*$$ $:*$$ $:puts$$ $; prints 9$$</code></pre>
    <p>While the {{sym-:}} symbol can be used to store quotations that can then be dequoted later using {{sym-.}}, typically you want to define operators which are <em>immediately dequoted</em> when pushed on the stack, thus behaving in a similar way as their native counterparts.</p>
    <p>You can achieve this using the {{sym-::}} symbol, and the previous example can be rewritten as follows:</p>
    <pre><code>    ($:dup$$ $:*$$ $:*$$) $"square"$$ $:::$$
    $0x3$$ $:square$$ $:puts$$ $; prints 9$$</code></pre>
    <p>In this case, you no longer need to explicitly dequote $:square$$ using $:.$$, because it has been stored as an <em>operator</em> and hex knows it has to be immediately dequoted when pushed on the stack.</p>
    <h3 id="registry">Registry<a href="#top"></a></h3>
    <p>The registry in hex is a simple dictionary that stores symbols and their associated values or functions. The
        registry is used to look up symbols when they are encountered in a hex program and to store user-defined symbols
        and their values.</p>
    <p>When a symbol is pushed onto the stack, hex looks up the symbol in the registry and pushes its associated value
        or function onto the stack. If the symbol is not found in the registry, an error is raised.</p>
    <p>The registry is implemented as a simple key-value store, where the keys are symbol identifiers and the values are
        the associated values or functions. The registry is global and shared across the entire hex program.</p>
    <p>hex provides a set of <a href="#native-symbols">native symbols</a> that are pre-defined in the registry and
        cannot be deleted or modified. These symbols provide basic functionality for arithmetic operations, control
        flow,
        I/O operations, file manipulation, and stack manipulation.</p>
    <p>hex also allows users to define their own symbols and store values in the registry. User-defined symbols can be
        created, modified, and deleted using the <a href="#memory-management-symbols">memory management symbols</a>
        provided natively.</p>
    <p>It is important to note that the registry is a global store, meaning that symbols are not lexically scoped and
        can be accessed from anywhere in the program. This design choice was made to keep the language simple and
        straightforward.</p>
    <p>In the canonical hex implementation, the registry can hold up to 4096 symbols (4032 of which can be user-defined
        symbols).</p>
    <h3 id="hbx">Hex Bytecode eXecutable (HBX) Format<a href="#top"></a></h3>
    <p>hex programs can be compiled to a binary format called Hex Bytecode eXecutable (HBX). HBX is a compact binary
        representation of hex programs that can be executed by the hex interpreter. HBX files are typically smaller and
        faster to load than hex source files, making them ideal for distribution and execution.</p>
    <p>HBX files are structured as follows:</p>
    <ul>
        <li>Bytecode Header (8 bytes)</li>
        <li>Bytecode Symbol Table &mdash; containing the list of all symbols that have been defined by the user in the
            compiled
            program.</li>
        <li>Bytecode Program &mdash; containing the compiled hex program as a sequence of opcodes and payload.</li>
    </ul>
    <h4 id="bytecode-header">Bytecode Header<a href="#top"></a></h4>
    <p>The header of an HBX file consists of 8 bytes:</p>
    <ul>
        <li><code>01</code> &mdash; Header Start</li>
        <li><code>68</code> &mdash; The letter 'h'</li>
        <li><code>65</code> &mdash; The letter 'e'</li>
        <li><code>78</code> &mdash; The letter 'x'</li>
        <li><code>01</code> &mdash; Version</li>
        <li><code>00</code> &mdash; First byte indicating the size of the symbol table (little-endian)</li>
        <li><code>00</code> &mdash; Second byte indicating the size of the symbol table (little-endian)</li>
        <li><code>02</code> &mdash; Header End</li>
    </ul>
    <h4 id="bytecode-symbol-table">Bytecode Symbol Table<a href="#top"></a></h4>
    <p>The symbol table in an HBX file contains the list of all symbols that have been defined by the user in the
        compiled program. Symbols are stored sequentially using the following format:</p>
    <ul>
        <li>Symbol Length (1 byte) &mdash; The length of the symbol identifier (Can be up to 255 characters long).</li>
        <li>Symbol Identifier (variable length) &mdash; The symbol identifier as a sequence of ASCII characters (not
            null-terminated).</li>
    </ul>
    <p>The symbol table can theoretically contain up to 65536 entries (the maximum size representable in two bytes);
        however, the maximum number of user-defined symbols is currently limited to 4032, since the <a
            href="#registry">registry</a> has a maximum size of 4096 items and 64 are reserved for native symbols.
    </p>
    <h4 id="bytecode">Bytecode Program<a href="#top"></a></h4>
    <p>The bytecode program in an HBX file contains the compiled hex program as a sequence of opcodes and payload. Each
        opcode is represented by a single byte, and some opcodes may have an associated payload.</p>
    <p>The following opcodes are defined for pushing different types of values on the stack</p>
    <ul>
        <li><code>00</code> &mdash; (LOOKUP) Lookup user symbol</li>
        <li><code>01</code> &mdash; (PUSHIN) Push Integer</li>
        <li><code>02</code> &mdash; (PUSHST) Push String</li>
        <li><code>03</code> &mdash; (PUSHQT) Push Quotation</li>
    </ul>
    <p>Other opcodes are assigned to each <a href="#native-symbols">native symbol</a>, and range from <code>10</code> to
        <code>4f</code>.
    </p>
    <p>Each of the four opcodes for pushing data has an associated payload, which is used to provide additional
        information to the opcode. The
        payload is represented as a sequence of bytes following the opcode byte.</p>
    <p>Opcodes for native symbols, instead, do not have any associated payload.</p>
    <h5 id="lookup">00 - LOOKUP<a href="#top"></a></h5>
    <p>The <code>00</code> (LOOKUP) opcode is used to look up a user-defined symbol in the symbol table and push its
        associated value onto
        the stack. The <code>00</code> opcode is followed by two bytes representing the index of the symbol in the
        symbol table, in
        little-endian format.</p>

    <p>For example, the sequence <code>00 03 00</code> instructs the interpreter to perform a lookup in the symbol table
        and retrieve the 4th symbol (index 3).</p>

    <h5 id="pushint">01 - PUSHIN<a href="#top"></a></h5>
    <p>The <code>01</code> (PUSHIN) opcode is used to push an integer value onto the stack. The <code>01</code> opcode
        is
        followed by:</p>
    <ul>
        <li>One byte representing the number of following bytes used to represent the integer (1 to 4).</li>
        <li>Four bytes representing the signed integer value using two's complement, in little-endian format.</li>
    </ul>

    <p>For example, the sequence <code>01 04 fe ff ff ff</code> represents the integer <code>-2</code> ($0xfffffe$$),
        and
        the sequence <code>01 01 10</code> represents the integer 16 ($0x10$).</p>

    <h5 id="pushstr">02 - PUSHST<a href="#top"></a></h5>
    <p>The <code>02</code> (PUSHST) opcode is used to push a string value onto the stack. The <code>02</code> opcode is
        followed by:</p>
    <ul>
        <li>A variable number of bytes representing the length of the string, encoded using the <a
                href="https://en.wikipedia.org/wiki/LEB128">Little Endian Base 128 (LEB128)</a> algorithm.
        </li>
        <li>Variable-length sequence of bytes representing the ASCII characters of the string, <em>without</em> the null
            terminator. Note that only ASCII
            characters are supported by the HBX format right now; attempting to encode non-ASCII characters will result
            in a compiler error.</li>
    </ul>
    <p>The following sequence:</p>
    <p>

        <code>02 16 54 68 69 73 20 69 73 20 61 20 74 65 73 74 20 73 74 72 69 6e 67 21</code>
    </p>
    <p>represents the string $"This is a test string!"$$</p>

    <h5 id="pushqt">03 - PUSHQT<a href="#top"></a></h5>
    <p>The <code>03</code> (PUSHQT) opcode is used to push a quotation value onto the stack. The <code>03</code> opcode
        is followed by:</p>
    <ul>
        <li>A variable number of bytes representing the number of items in the quotation, encoded using the <a
                href="https://en.wikipedia.org/wiki/LEB128">Little Endian Base 128 (LEB128)</a> algorithm.
        </li>
        <li>The opcode sequences for each item of the quotation.</li>
    </ul>

    <p>The following sequence:</p>
    <p>
        <code>03 05 02 04 74 65 73 74 01 01 01 38 3d 45</code>
    </p>
    <p>represents the quotation <code>($"test"$$ $0x1$$ $:dec$$ $:cat$$ $:puts$$)</code></p>

    <h4 id="bytecode-example">Full Bytecode Example<a href="#top"></a></h4>
    <p>Consider the following hex program:</p>
    <pre><code>(
  $&quot;_n&quot;$$ $:$$
  ($:_n$$ $0x0$$ $:&lt;=$$)
    ($0x1$$)
    ($:_n$$ $:dup$$ $0x1$$ $:-$$ $:factorial$$ $:*$$)
  $:if$$
  $&quot;_n&quot;$$ $:#$$
) $&quot;factorial&quot;$$ $:::$$
$0x5$$ $:factorial$$ $:dec$$ $:puts$$</code></pre>

    <p>This gets compiled to the following bytecode:</p>
    <pre><code>01 68 65 78 01 02 00 02 
02 5f 6e 09 66 61 63 74 
6f 72 69 61 6c 03 08 02 
02 5f 6e 10 03 03 00 00 
00 01 01 00 31 03 01 01
01 01 03 06 00 00 00 1a 
01 01 01 22 00 01 00 23 
14 02 02 5f 6e 12 02 09 
66 61 63 74 6f 72 69 61 
6c 11 01 01 05 00 01 00 
38 45</code></pre>
    <p>And here is an annotated breakdown:</p>
    <pre><code>$; Header with symbol table of size 2$$
01 68 65 78 01 02 00 02 
$; Symbol Table: _n, factorial$$
02 5f 6e 
09 66 61 63 74 6f 72 69 61 6c 
$; Push quotation of eight items$$
03 08 
   $; Push string "_n"$$
   02 02 5f 6e 
   10 $; Symbol :$$
   $; Push quotation of three items$$
   03 03 
      $; Lookup first symbol (_n)$$
      00 00 00 
      $; Push integer 0x0$$
      01 01 00 
      31 $; Symbol <=$$
   $; Push quotation of one item$$
   03 01 
      $; Push integer 0x1$$
      01 01 01 
   $; Push quotation of six items$$
   03 06 
      $; Lookup first symbol (_n)$$
      00 00 00 
      1a $; Symbol dup$$
      $; Push integer 0x1$$
      01 01 01 
      22 $; symbol -$$
      $; Lookup second symbol (factorial)$$
      00 01 00 
      23 $; Symbol *$$
   14 $; Symbol if$$
   02 02 5f 6e 
   12 $; Symbol ::$$
$; Push string "factorial"$$
02 09 66 61 63 74 6f 72 69 61 6c 
11 $; Symbol #$$
$; Push integer 5$$
01 01 05 
$; Lookup second symbol (factorial)$$
00 01 00 
38 $; Symbol dec$$
45 $; Symbol puts$$</code></pre>

    <h3 id="native-symbols">Native Symbol Reference<a href="#top"></a></h3>
    <p>hex provides a set of 64 ($0x40$$) native symbols that are built-in and pre-defined in the registry. The
        following section provides details on each of these symbols, including a signature illustrating how each
        symbol
        manipulates the stack.</p>
    <p>The notation used to specify the signature of a symbol is as follows:</p>
    <pre><code>    <mark>in1 in2 ... inN &rarr; out1 out2 ... outM</mark></code></pre>
    <p>Where <code>in1</code>, <code>in2</code>, ..., <code>inN</code> are the items consumed from the stack,
        and <code>out1</code>, <code>out2</code>, ..., <code>outM</code> are the items pushed back onto the
        stack.</p>
    <p> Note that the <code>&rarr;</code> character represents the symbol being described, and: </p>
    <ul>
        <li><code>inN</code> is the first element on the stack <em>before</em> the symbol is pushed on the
            stack.
        </li>
        <li><code>outM</code> is the first element on the stack <em>after</em> the symbol is pushed on the
            stack.
        </li>
    </ul>
    <p>The following abbreviations are used to represent different types of literals (and each can have a
        numerical
        suffix for differentiation within the signature):</p>
    <ul>
        <li><code>a</code> &mdash; Any literal value</li>
        <li><code>s</code> &mdash; String</li>
        <li><code>q</code> &mdash; Quotation</li>
        <li><code>i</code> &mdash; Integer</li>
    </ul>
    <p>Additionally, <code>*</code> is used to represent zero or more literals of any type.</p>
    <p>Consider, for example, the following signature for the {{sym-swap}} symbol:</p>
    <p><mark> a1 a2 &rarr; a2 a1</mark></p>
    <p>This signature indicates that the symbol {{sym-swap}} pops two items from the stack (<code>a1</code> and
        <code>a2</code>), and then pushes them back onto the stack in reverse order (<code>a2</code> and
        <code>a1</code>).
    </p>
    <h4 id="memory-management-symbols">Memory Management Symbols<a href="#top"></a></h4>
    <h5 id="store-symbol"><code>$::$$</code> Symbol<a href="#top"></a></h5>
    <p><mark>a s &rarr;</mark></p>
    <aside>OPCODE: <code>10</code></aside>
    <p>Stores the literal <code>a</code> in the registry as the symbol <code>s</code>.</p>
    <h5 id="operator-symbol"><code>$:::$$</code> Symbol<a href="#top"></a></h5>
    <p><mark>a s &rarr;</mark></p>
    <aside>OPCODE: <code>11</code></aside>
    <p>Stores the literal <code>a</code> in the registry as the symbol <code>s</code>. If %:a%% is a quotation, it will be immediately dequoted when pushed on the stack.</p>
     <h5 id="free-symbol"><code>$:#$$</code> Symbol<a href="#top"></a></h5>
    <p><mark>s &rarr;</mark></p>
    <aside>OPCODE: <code>12</code></aside>
    <p>Frees the symbol <code>s</code> from the registry.</p>
    <h5 id="symbols-symbol"><code>$:symbols$$</code> Symbol<a href="#top"></a></h5>
    <p><mark>&rarr; q</mark></p>
    <aside>OPCODE: <code>13</code></aside>
    <p>Pushes a quotation on the stack containing the identifiers of a the symbols currently stored in the registry.</p>
    <h4 id="control-flow-symbols">Control Flow Symbols<a href="#top"></a></h4>
    <h5 id="if-symbol"><code>$:if$$</code> Symbol<a href="#top"></a></h5>
    <p><mark>q1 q2 q3 &rarr; *</mark></p>
    <aside>OPCODE: <code>14</code></aside>
    <p>Dequotes quotation <code>q1</code>, if it pushes a positive integer on the stack it dequotes
        <code>q2</code>,
        otherwise
        dequotes <code>q3</code>.
    </p> 
    <h5 id="while-symbol"><code>$:while$$</code> Symbol<a href="#top"></a></h5>
    <p><mark>q1 q2 &rarr; *</mark></p>
    <aside>OPCODE: <code>15</code></aside>
    <p>Dequotes quotation <code>q1</code>, if it pushes a positive integer on the stack it dequotes
        <code>q2</code>
        and
        repeats the process.
    </p>
    <h5 id="error-symbol"><code>$:error$$</code> Symbol<a href="#top"></a></h5>
    <p><mark>&rarr; s</mark></p>
    <aside>OPCODE: <code>16</code></aside>
    <p>Pushes the last error message to the stack.</p>
    <h5 id="try-symbol"><code>$:try$$</code> Symbol<a href="#top"></a></h5>
    <p><mark>q1 q2 &rarr; *</mark></p>
    <aside>OPCODE: <code>17</code></aside>
    <p>Dequotes quotation <code>q1</code>, if it throws an error it dequotes <code>q2</code>.</p>
     <h5 id="throw-symbol"><code>$:throw$$</code> Symbol<a href="#top"></a></h5>
    <p><mark>s &rarr;</mark></p>
    <aside>OPCODE: <code>18</code></aside>
    <p>Throws an error printing error message %:s%%.</p>
    <h4 id="stack-management-symbols">Stack Management Symbol<a href="#top"></a></h4>
    <h5 id="dup-symbol"><code>$:dup$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> a &rarr; a a</mark></p>
    <aside>OPCODE: <code>19</code></aside>
    <p>Duplicates literal <code>a</code> and pushes it on the stack.</p>
    <h5 id="stack-symbol"><code>$:stack$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> &rarr; q</mark></p>
    <aside>OPCODE: <code>1a</code></aside>
    <p>Pushes the items currently on the stack as a quotation on the stack.</p>
    <h5 id="pop-symbol"><code>$:pop$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> a &rarr;</mark></p>
    <aside>OPCODE: <code>1b</code></aside>
    <p>Removes the top item from the stack.</p>
    <h5 id="swap-symbol"><code>$:swap$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> a1 a2 &rarr; a2 a1</mark></p>
    <aside>OPCODE: <code>1c</code></aside>
    <p>Swaps the top two items on the stack.</p>
    <h4 id="evaluation-symbols">Evaluation Symbols<a href="#top"></a></h4>
    <h5 id="i-symbol"><code>$:.$$</code> Symbol<a href="#top"></a></h5>
    <p><mark>q &rarr; *</mark></p>
    <aside>OPCODE: <code>1d</code></aside>
    <p>Dequotes quotation <code>q</code>.</p>
    <h5 id="eval-symbol"><code>$:!$$</code> Symbol<a href="#top"></a></h5>
    <p><mark>(s|q) &rarr; *</mark></p>
    <aside>OPCODE: <code>1e</code></aside>
    <p>Evaluates the string <code>s</code> as an hex program, or the array of integers to be interpreted as hex
        bytecode
        (HBX format).</p>
    <h5 id="quote-symbol"><code>$:&#39;$$</code> Symbol<a href="#top"></a></h5>
    <p><mark>a &rarr; q</mark></p>
    <aside>OPCODE: <code>1f</code></aside>
    <p>Pushes the literal <code>a</code> wrapped in a quotation on the stack.</p>
     <h5 id="debug-symbol"><code>$:&#39;$$</code> Symbol<a href="#top"></a></h5>
    <p><mark>q &rarr; *</mark></p>
    <aside>OPCODE: <code>20</code></aside>
    <p>Dequotes <code>q</code> with debugging enabled.</p>
    <h4 id="arithmetic-symbols">Arithmetic Symbols<a href="#top"></a></h4>
    <h5 id="add-symbol"><code>$:+$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i1 i2 &rarr; i</mark></p>
    <aside>OPCODE: <code>21</code></aside>
    <p>Pushes the result of the sum of <code>i1</code> and <code>i2</code> on the stack.</p>
    <h5 id="subtract-symbol"><code>$:-$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i1 12 &rarr; i</mark></p>
    <aside>OPCODE: <code>22</code></aside>
    <p>Pushes the result of the subtraction of <code>12</code> from <code>i1</code> on the stack.</p>
    <h5 id="multiply-symbol"><code>$:*$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i1 12 &rarr; i</mark></p>
    <aside>OPCODE: <code>23</code></aside>
    <p>Pushes the result of the multiplication of <code>i1</code> and <code>12</code> on the stack.</p>
    <h5 id="divide-symbol"><code>$:/$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i1 12 &rarr; i</mark></p>
    <aside>OPCODE: <code>24</code></aside>
    <p>Pushes the result of the division of <code>i1</code> by <code>12</code> on the stack.</p>
    <h5 id="modulo-symbol"><code>$:%$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i1 12 &rarr; i</mark></p>
    <aside>OPCODE: <code>25</code></aside>
    <p>Pushes the result of the modulo of <code>i1</code> by <code>12</code> on the stack.</p>
    <h4 id="bitwise-operations-symbols">Bitwise Operations Symbols<a href="#top"></a></h4>
    <h5 id="bitwise-and-symbol"><code>$:&amp;$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i1 12 &rarr; i</mark></p>
    <aside>OPCODE: <code>26</code></aside>
    <p>Pushes the result of a bitwise and of <code>i1</code> and <code>i2</code> on the stack.</p>
    <h5 id="bitwise-or-symbol"><code>$:|$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i1 12 &rarr; i</mark></p>
    <aside>OPCODE: <code>27</code></aside>
    <p>Pushes the result of a bitwise or of <code>i1</code> and <code>i2</code> on the stack.</p>
    <h5 id="bitwise-xor-symbol"><code>$:^$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i1 12 &rarr; i</mark></p>
    <aside>OPCODE: <code>28</code></aside>
    <p>Pushes the result of a bitwise xor of <code>i1</code> and <code>i2</code> on the stack.</p>
    <h5 id="bitwise-not-symbol"><code>$:~$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i &rarr; i</mark></p>
    <aside>OPCODE: <code>29</code></aside>
    <p>Pushes the result of a bitwise not of <code>i</code> on the stack.</p>
    <h5 id="bitwise-leftshift-symbol"><code>$:&lt;&lt;$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i1 12 &rarr; i</mark></p>
    <aside>OPCODE: <code>2a</code></aside>
    <p>Pushes the result of shifting <code>i1</code> by <code>i2</code> bits to the left.</p>
    <h5 id="bitwise-rightshift-symbol"><code>$:&gt;&gt;$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i1 12 &rarr; i</mark></p>
    <aside>OPCODE: <code>2b</code></aside>
    <p>Pushes the result of shifting <code>i1</code> by <code>i2</code> bits to the right.</p>
    <h4 id="comparisons-symbols">Comparisons Symbols<a href="#top"></a></h4>
    <h5 id="equal-symbol"><code>$:==$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> a1 a2 &rarr; i</mark></p>
    <aside>OPCODE: <code>2c</code></aside>
    <p>Pushes <code>0x1</code> on the stack if <code>a1</code> and <code>a2</code> are equal, or
        <code>0x0</code>
        otherwise.
    </p>
    <h5 id="notequal-symbol"><code>$:!=$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i1 12 &rarr; i</mark></p>
    <aside>OPCODE: <code>2d</code></aside>
    <p>Pushes <code>0x1</code> on the stack if <code>a1</code> and <code>a2</code> are not equal, or
        <code>0x0</code>
        otherwise.
    </p>
    <h5 id="greaterthan-symbol"><code>$:&gt;$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i1 12 &rarr; i</mark></p>
    <aside>OPCODE: <code>2e</code></aside>
    <p>Pushes <code>0x1</code> on the stack if <code>i1</code> is greater than <code>i2</code>, or
        <code>0x0</code>
        otherwise.
    </p>
    <h5 id="lessthan-symbol"><code>$:&lt;$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i1 12 &rarr; i</mark></p>
    <aside>OPCODE: <code>2f</code></aside>
    <p>Pushes <code>0x1</code> on the stack if <code>i1</code> is less than <code>i2</code>, or <code>0x0</code>
        otherwise.</p>
    <h5 id="greaterthanequal-symbol"><code>$:&gt;=$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i1 12 &rarr; i</mark></p>
    <aside>OPCODE: <code>30</code></aside>
    <p>Pushes <code>0x1</code> on the stack if <code>i1</code> is greater than or equal to <code>i2</code>, or
        <code>0x0</code> otherwise.
    </p>
    <h5 id="lessthanequal-symbol"><code>$:&lt;=$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i1 i2 &rarr; i</mark></p>
    <aside>OPCODE: <code>31</code></aside>
    <p>Pushes <code>0x1</code> on the stack if <code>i1</code> is less than or equal to <code>i2</code>, or
        <code>0x0</code> otherwise.
    </p>
    <h4 id="boolean-logic-symbols">Boolean Logic Symbols<a href="#top"></a></h4>
    <h5 id="and-symbol"><code>$:and$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i1 i2 &rarr; i</mark></p>
    <aside>OPCODE: <code>32</code></aside>
    <p>Pushes <code>0x1</code> on the stack if <code>i1</code> and <code>i2</code> are non-zero integers, or
        <code>0x0</code> otherwise.
    </p>
    <h5 id="or-symbol"><code>$:or$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i1 i2 &rarr; i</mark></p>
    <aside>OPCODE: <code>33</code></aside>
    <p>Pushes <code>0x1</code> on the stack if <code>i1</code> or <code>i2</code> are non-zero integers, or
        <code>0x0</code> otherwise.
    </p>
    <h5 id="not-symbol"><code>$:not$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i &rarr; i</mark></p>
    <aside>OPCODE: <code>34</code></aside>
    <p>Pushes <code>0x1</code> on the stack if <code>i</code> is zero, or <code>0x0</code> otherwise.</p>
    <h5 id="xor-symbol"><code>$:xor$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i1 i2 &rarr; i</mark></p>
    <aside>OPCODE: <code>35</code></aside>
    <p>Pushes <code>0x1</code> on the stack if <code>i1</code> and <code>i2</code> are different, or
        <code>0x0</code>
        otherwise.
    </p>
    <h4 id="type-checking-and-conversion-symbols">Type Checking and Conversion Symbols<a href="#top"></a></h4>
    <h5 id="int-symbol"><code>$:int$$</code> Symbol<a href="#top"></a></h5>
    <p><mark>s &rarr; i</mark></p>
    <aside>OPCODE: <code>36</code></aside>
    <p>Converts the string <code>s</code> representing a hexadecimal integer to an integer value and pushes it
        on
        the
        stack.</p>
    <h5 id="str-symbol"><code>$:str$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i &rarr; s</mark></p>
    <aside>OPCODE: <code>37</code></aside>
    <p>Converts the integer <code>i</code> to a string representing a hexadecimal integer and pushes it on the
        stack.
    </p>
    <h5 id="dec-symbol"><code>$:dec$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i &rarr; s</mark></p>
    <aside>OPCODE: <code>38</code></aside>
    <p>Converts the integer <code>i</code> to a string representing a decimal integer and pushes it on the
        stack.
    </p>
    <h5 id="hex-symbol"><code>$:hex$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> s &rarr; i</mark></p>
    <aside>OPCODE: <code>39</code></aside>
    <p>Converts the string <code>s</code> representing a decimal integer to an integer value and pushes it on
        the
        stack.
    </p>
    <h5 id="ord-symbol"><code>$:ord$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> s &rarr; i</mark></p>
    <aside>OPCODE: <code>3a</code></aside>
    <p>Pushes the ASCII value of the string <code>s</code> on the stack.</p>
    <p>If <code>s</code> is longer than 1 character or if it is not representable using an ASCII code between
        $0x0$$
        and
        $0x7f$$, <code>$0xffffffff$$</code> is pushed on the stack.</p>
    <h5 id="chr-symbol"><code>$:chr$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i &rarr; s</mark></p>
    <aside>OPCODE: <code>3b</code></aside>
    <p>Pushes the ASCII character represented by the integer <code>i</code> on the stack.</p>
    <p>If <code>i</code> is not between $0x0$$ and $0x7f$$, an empty string is pushed on the stack.</p>
    <h5 id="type-symbol"><code>$:type$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> a &rarr; s</mark></p>
    <aside>OPCODE: <code>3c</code></aside>
    <p>Pushes the type of the literal <code>a</code> on the stack (<code>integer</code>, <code>string</code>,
        <code>quotation</code>, <code>native-symbol</code>, <code>user-symbol</code>, <code>invalid</code>, or
        <code>unknown</code>).
    </p>
    <h4 id="list-symbols">List (Strings and Quotations) Symbols<a href="#top"></a></h4>
    <h5 id="cat-symbol"><code>$:cat$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> (s1 s2|q1 q2) &rarr; (s|q)</mark></p>
    <aside>OPCODE: <code>3d</code></aside>
    <p>Pushes the result of the concatenation of two strings or two quotations on the stack.</p>
    <h5 id="len-symbol"><code>$:len$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> (s|q) &rarr; i</mark></p>
    <aside>OPCODE: <code>3e</code></aside>
    <p>Pushes the length of a string or a quotation on the stack.</p>
    <h5 id="get-symbol"><code>$:get$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> (s|q) i &rarr; a</mark></p>
    <aside>OPCODE: <code>3f</code></aside>
    <p>Pushes the <code>i</code>th item of a string or a quotation on the stack.</p>
    <h5 id="index-symbol"><code>$:index$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> (s a|q a) &rarr; i</mark></p>
    <aside>OPCODE: <code>40</code></aside>
    <p>Pushes the index of the first occurrence of the literal <code>a</code> in a string or a quotation on the
        stack.
        If <code>a</code> is not found, <code>$0xffffffff$$</code> is pushed on the stack.</p>
    <h5 id="join-symbol"><code>$:join$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> q s1 &rarr; s2</mark></p>
    <aside>OPCODE: <code>41</code></aside>
    <p>Assuming that <code>q</code> is a quotation containing only strings, pushes the string <code>s2</code>
        obtained
        by joining each element of <code>q</code> together using <code>s1</code> as a delimiter. </p>
    <h5 id="split-symbol"><code>$:split$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> s1 s2 &rarr; q</mark></p>
    <aside>OPCODE: <code>42</code></aside>
    <p>Pushes a quotation <code>q</code> containing the strings obtained by splitting <code>s1</code> using
        <code>s2</code> as a delimiter.
    </p>
    <h5 id="replace-symbol"><code>$:replace$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> s1 s2 s3 &rarr; s4</mark></p>
    <aside>OPCODE: <code>43</code></aside>
    <p>Pushes the string <code>s4</code> obtained by replacing the first occurrence of <code>s2</code> in
        <code>s1</code> by
        <code>s3</code>.
    </p> 
    <h5 id="map-symbol"><code>$:map$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> q1 q2 &rarr; q3</mark></p>
    <aside>OPCODE: <code>44</code></aside>
    <p>Dequotes quotation <code>q1</code> and applies it to each item of quotation <code>q2</code> to obtain a
        new
        quotation <code>q3</code>.
    <h4 id="input-output-symbols">Input/Output Symbols<a href="#top"></a></h4>
    <h5 id="puts-symbol"><code>$:puts$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> a &rarr;</mark></p>
    <aside>OPCODE: <code>45</code></aside>
    <p>Prints <code>a</code> to standard output, followed by a new line.</p>
    <h5 id="warn-symbol"><code>$:warn$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> a &rarr;</mark></p>
    <aside>OPCODE: <code>46</code></aside>
    <p>Prints <code>a</code> to standard error, followed by a new line.</p>
    <h5 id="print-symbol"><code>$:print$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> a &rarr;</mark></p>
    <aside>OPCODE: <code>47</code></aside>
    <p>Prints <code>a</code> to standard output.</p>
    <h5 id="gets-symbol"><code>$:gets$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> &rarr; s</mark></p>
    <aside>OPCODE: <code>48</code></aside>
    <p>Reads a line from standard input and pushes it on the stack as a string.</p>
    <h4 id="file-symbols">File Symbols<a href="#top"></a></h4>
    <h5 id="read-symbol"><code>$:read$$</code> Symbol<a href="#top"></a></h5>
    <p><mark>s1 &rarr; (s2|q)</mark></p>
    <aside>OPCODE: <code>49</code></aside>
    <p>Reads the content of the file <code>s1</code> and pushes it on the stack as a string, if the file is in
        textual
        format, or as a quotation of integers representing bytes, if the file is in binary format.</p>
    <h5 id="write-symbol"><code>$:write$$</code> Symbol<a href="#top"></a></h5>
    <p><mark>(s1|q) s2 &rarr;</mark></p>
    <aside>OPCODE: <code>4a</code></aside>
    <p>Writes the string <code>s1</code> or the array of integers representing bytes <code>q</code> to the file
        <code>s2</code>.
    <h5 id="append-symbol"><code>$:append$$</code> Symbol<a href="#top"></a></h5>
    <p><mark>(s1|q) s2 &rarr;</mark></p>
    <aside>OPCODE: <code>4b</code></aside>
    <p>Appends the string <code>s1</code> or the array of integers representing bytes <code>q</code> to the file
        <code>s2</code>.
    </p>
    <h4 id="shell-symbols">Shell Symbols<a href="#top"></a></h4>
    <h5 id="args-symbol"><code>$:args$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> &rarr; q</mark></p>
    <aside>OPCODE: <code>4c</code></aside>
    <p>Pushes the command line arguments as a quotation on the stack.</p>
    <h5 id="exit-symbol"><code>$:exit$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> i &rarr;</mark></p>
    <aside>OPCODE: <code>4d</code></aside>
    <p>Exits the program with the exit code <code>i</code>.</p>
    <h5 id="exec-symbol"><code>$:exec$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> s &rarr; i</mark></p>
    <aside>OPCODE: <code>4e</code></aside>
    <p>Executes the string <code>s</code> as a shell command, and pushes the command return code on the stack.
    </p>
    <h5 id="run-symbol"><code>$:run$$</code> Symbol<a href="#top"></a></h5>
    <p><mark> s &rarr; q</mark></p>
    <aside>OPCODE: <code>4f</code></aside>
    <p>Executes the string <code>s</code> as a shell command, capturing its output and errors. It pushes a
        quotation
        on
        the stack containing the following items:
    </p>
    <ul>
        <li>the exit code of the command as an integer</li>
        <li>the standard output of the command as a string</li>
        <li>the standard error of the command as a string</li>
    </ul>
</article>