web/contents/spec.html
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 |
<article> <h2>Specification</h2> <nav> <ul> <li><a href="#syntax">Syntax</a> <ul> <li><a href="#comments">Comments</a> <li><a href="#integer-literals">Integer Literals</a></li> <li><a href="#string-literals">String Literals</a></li> <li><a href="#quotation-literals">Quotation Literals</a></li> <li><a href="#symbol-identifiers">Symbol Identifiers</a></li> </ul> </li> <li><a href="#data-types">Data Types</a> <ul> <li><a href="#integers">Integers</a></li> <li><a href="#strings">Strings</a></li> <li><a href="#quotations">Quotations</a></li> <li><a href="#symbols">Symbols</a></li> </ul> </li> <li><a href="#stack">Stack</a> <ul> <li><a href="#pushing-literals">Pushing Literals</a></li> <li><a href="#pushing-symbols">Pushing Symbols</a></li> </ul> </li> <li><a href="#registry">Registry</a></li> <li><a href="#hbx">Hex Bytecode eXecutable (HBX) Format</a> <ul> <li><a href="#bytecode-header">Bytecode Header</a></li> <li><a href="#bytecode-symbol-table">Bytecode Symbol Table</a></li> <li><a href="#bytecode">Bytecode Program</a></li> <li><a href="#bytecode-example">Full Bytecode Example</a></li> </ul> </li> <li><a href="#native-symbols">Native Symbol Reference</a> <ul> <li><a href="#memory-management-symbols">Memory Management Symbols</a></li> <li><a href="#control-flow-symbols">Control Flow Symbols</a></li> <li><a href="#stack-management-symbols">Stack Management Symbols</a></li> <li><a href="#evaluation-symbols">Evaluation Symbols</a></li> <li><a href="#arithmetic-symbols">Arithmetic Symbols</a></li> <li><a href="#bitwise-operations-symbols">Bitwise Operations Symbols</a></li> <li><a href="#comparisons-symbols">Comparisons Symbols</a></li> <li><a href="#boolean-logic-symbols">Boolean Logic Symbols</a></li> <li><a href="#type-checking-and-conversion-symbols">Type Checking and Conversion Symbols</a></li> <li><a href="#list-symbols">List (Strings and Quotations) Symbols</a></li> <li><a href="#input-output-symbols">Input/Output Symbols</a></li> <li><a href="#file-symbols">File Symbols</a></li> <li><a href="#shell-symbols">Shell Symbols</a></li> </ul> </li> </ul> </nav> <h3 id="introduction">Introduction<a href="#top"></a></h3> <p><strong>hex</strong> is a minimalist, concatenative, stack-based programming language designed for experimenting with the concatenative programming paradigm. It is inspired by the <a href="https://min-lang.org" target="_blank">min</a> programming language and aims to provide a small yet powerful language for creating short scripts and automating common tasks.</p> <p>hex supports 32-bit integers (written only in hexadecimal format), strings, and quotations (lists). It features a set of built-in symbols that implement arithmetic operations, boolean logic, bitwise operations, comparison of integers, I/O operations, file manipulation, external process execution, and stack manipulation. The language is fully homoiconic, meaning that everything in hex is data.</p> <p>hex was created with simplicity in mind, both in its implementation and usage. The language's design encourages a minimalist approach, focusing on essential features and avoiding unnecessary complexity.</p> <h3 id="syntax">Syntax<a href="#top"></a></h3> <p>The syntax of hex is designed to be simple and intuitive, following the principles of concatenative programming. In hex, programs are composed of sequences of literals and symbols, which are evaluated from left to right.</p> <p> Literals push values onto the stack, while symbols manipulate the stack or perform operations. There are no explicit control structures; instead, hex relies on stack manipulation and quotations to achieve flow control and data management. Symbols in hex can be used to store values globally, providing a way to manage state across different parts of a program.</p> <p>hex programs are written as sequences of whitespace-separated tokens. Tokens can be literals, symbols, or comments.</p> <p>This is an example of a simple hex program:</p> <pre><code> $; Filters a quotation to keep only the even numbers$$ ($0x2$$ $0x3$$ $0x4$$ $0x5$$ $0x6$$) ($0x2$$ $:%$$ $0x0$$ $:==$$) $:filter$$</code></pre> <p>This example includes:</p> <ul> <li>One single-line comment: <code>$; Filters a quotation to keep only the even numbers$$</code></li> <li>Two quotations: <code>($0x2$$ $0x3$$ $0x4$$ $0x5$$ $0x6$$)</code> and <code>($0x2$$ $:%$$ $0x0$$ $:==$$)</code> </li> <li>Three symbols: <code>$:%$$</code>, <code>$:==$$</code>, and <code>$:filter$$</code></li> </ul> <h4 id="comments">Comments<a href="#top"></a></h4> <p>Comments in hex are used to annotate code and are ignored during execution. There are two types of comments: single-line comments and multi-line comments.</p> <h5 id="single-line-comments">Single-line Comments<a href="#top"></a></h5> <p>Single-line comments start with a semicolon (<code>;</code>) and continue until the end of the line. Everything after the semicolon is ignored.</p> <p>Example:</p> <pre><code> $; This is a single-line comment$$ $0x2$$ $0x3$$ $:+$$ $; This adds 0x2 and 0x3$</code></pre> <h5 id="multi-line-comments">Multi-line Comments<a href="#top"></a></h5> <p>Multi-line comments start with <code>#|</code> and end with <code>|#</code>. Everything between these markers is ignored, allowing comments to span multiple lines.</p> <p>Example:</p> <pre><code> $#| This is a multi-line comment It can span multiple lines |#$ $0x2$$ $0x3$$ $:+$$ $#| This adds 0x2 and 0x3 |#$</code></pre> <h4 id="integer-literals">Integer Literals<a href="#top"></a></h4> <p>Integer literals in hex are always written in hexadecimal form, prefixed with <code>0x</code>. They can contain up to 8 hexadecimal digits, representing 32-bit integers. Hexadecimal digits include the numbers <code>0-9</code> and the letters <code>>a-f</code> (or <code>A-F</code>), which correspond to the decimal values 10-15. </p> <p>Integers in hex can be positive or negative, and are implemented using <a href="https://en.wikipedia.org/wiki/Two%27s_complement" target="_blank">two's complement</a> representation. For more information on two's complement, see .</p> <p>Examples:</p> <ul> <li><code>$0x1$$</code> represents the decimal value 1.</li> <li><code>$0xa$$</code> represents the decimal value 10.</li> <li><code>$0x1f$$</code> represents the decimal value 31.</li> <li><code>$0xffffffff$$</code> represents the decimal value -1 (in two's complement).</li> </ul> <p>Integers are case-insensitive; typically, lowercase letters are preferred but not mandatory.</p> <h4 id="string-literals">String Literals<a href="#top"></a></h4> <p>String literals in hex are delimited by double quotes (<code>"</code>). They can contain any character except for a newline, meaning that strings must be on a single line. To include special characters within a string, hex supports the following escape codes:</p> <ul> <li><code>\n</code> - Newline</li> <li><code>\t</code> - Tab</li> <li><code>\r</code> - Carriage return</li> <li><code>\b</code> - Backspace</li> <li><code>\f</code> - Form feed</li> <li><code>\v</code> - Vertical tab</li> <li><code>\\</code> - Backslash</li> <li><code>\"</code> - Double quote</li> </ul> <p>Example:</p> <pre><code>$"Hello, World!\nThis is a new line."$$</code></pre> <h4 id="quotation-literals">Quotation Literals<a href="#top"></a></h4> <p>Quotations in hex are delimited by parentheses (they must start with <code>(</code> and end with <code>)</code>). They can contain integers, strings, symbols, and even other quotations, allowing for nested structures.</p> <p>Examples:</p> <ul> <li><code>($0x1$$ $0x2$$ $0x3$$)</code> - A quotation containing three integer literals.</li> <li><code>($0x1$$ $"hello"$$ ($0x2$$ $0x3$$))</code> - A nested quotation containing an integer, a string, and another quotation.</li> </ul> <p>Unlike string literals, quotations can span multiple lines, making them suitable for representing complex data structures and control flow mechanisms.</p> <h4 id="symbol-identifiers">Symbol Identifiers<a href="#top"></a></h4> <p>Symbol identifiers in hex are used to represent built-in native symbols and user-defined symbols.</p> <p>There are 0x40 (64) <a href="#native-symbols">native symbols</a> in hex, and some of them contain special characters like <code>==</code> or <code>.</code></p> <p>Instead, user-defined symbols:</p> <ul> <li>must start with a letter (<code>a-z</code> or <code>A-Z</code>) or an underscore (<code>_</code>)</li> <li>can contain additional letters (<code>a-z</code> or <code>A-Z</code>), digits (<code>0-9</code>), dashes (<code>-</code>) and underscores (<code>_</code>)</li> </ul> <p>Symbols are case-sensitive.</p> <h3 id="data-types">Data Types<a href="#top"></a></h3> <p>hex supports the following data types:</p> <ul> <li><a href="#integers">Integers</a> — 32-bit signed integers represented in hexadecimal form.</li> <li><a href="#strings">Strings</a> — Sequences of characters delimited by double quotes.</li> <li><a href="#quotations">Quotations</a> — Lists of literals, symbols, and other quotations delimited by parentheses.</li> <li><a href="#symbols">Symbols</a> — Identifiers representing native or user-defined symbols.</li> </ul> <h4 id="integers">Integers<a href="#top"></a></h4> <p>Integers in hex are 32-bit signed values represented in hexadecimal form. They can be positive or negative (using two's complement), and range from <code>-2,147,483,647</code> (<code>-2<sup>31</sup></code>) and <code>2,147,483,647</code> (<code>2<sup>31</sup> - 1</code>) </p> <p>Integers are written using the prefix <code>$0x$$</code> followed by up to 8 hexadecimal digits.</p> <p>hex integers are case-insensitive, meaning that <code>$0x1f$$</code> and <code><span class="hex-integer">0X1F</span></code> are equivalent (however, lowercase letters are preferred). </p> computations.</p> <p>Because hex has no boolean data type, $0x0$$ is assumed to be false, and any other integer value is assumed to be true.</p> <p>Examples:</p> <ul> <li><code>$0x1$$</code> — Represents the decimal value 1.</li> <li><code>$0xffffffff$$</code> — Represents the decimal value -1.</li> <li><code>$0x10$$</code> — Represents the decimal value 16.</li> </ul> <h4 id="strings">Strings<a href="#top"></a></h4> <p>Strings in hex are sequences of characters delimited by double quotes (<code>"</code>). They can contain any character except for a newline character, and special characters can be escaped using backslashes.</p> <p>Strings are used to represent textual data and can be manipulated using various string manipulation symbols in hex.</p> <p>Examples:</p> <ul> <li><code>$"Hello, World!"$$</code> — Represents the string <code>Hello, World!</code>.</li> <li><code>$"This is a string with a newline:\nSecond line."$$</code> — Represents a string with a newline character.</li> </ul> <h4 id="quotations">Quotations<a href="#top"></a></h4> <p>Quotations in hex are lists of literals (including other quotations) and symbols delimited by parentheses (<code>(</code> and <code>)</code>). They are used to represent structured data and are a fundamental part of the language's syntax.</p> <p>An important thing to remember about quotations is that any symbol contained in them will not be executed, and this is a fundamental property of hex and other concatenative programming languages, because it means that quotation effectively acts as code blocks, holding code that can be executed later on using appropriate dequoting symbols.</p> <p>Consider the following example:</p> <pre><code> $0x0$$ $"t-count"$$ $::$$ ($:t-count$$ $0xa$$ $:<$$) ( $:t-count$$ $:puts$$ $:t-count$$ $0x1$$ $:+$$ $"t-count"$$ $::$$ ) $:while$$ $"t-count"$$ $:#$$</code></pre> <p>This example defines a symbol <code>$:t-count$$</code> that counts from 0 to 9 and prints each number to the standard output. The quotation <code>($:t-count$$ $0xa$$ $:<$$)</code> is used to check if the count is less than 10, and the <code>$:while$$</code> symbol repeats the process until the condition is no longer met. </p> <p>In this case, the first two quotations are first pushed on the stack, and the the <code>$:while$$</code> symbols perform the dequoting necessary to implement the expected control flow.</p> <h4 id="symbols">Symbols<a href="#top"></a></h4> <p>In hex there native symbols and user-defined symbols. Native symbols are built-in functions that perform specific operations, while user-defined symbols are created by the user to store values or define custom behavior.</p> <p>hex provides 64 ($0x40$$) native symbols that cover a wide range of functionality, including arithmetic operations, control flow, I/O operations, file manipulation, and stack manipulation.</p> <p>You can think of symbols as both functions that manipulate the <a href="#stack">stack</a>, or variables that can be used to store literal values.</p> <p>While native symbol identifiers sometimes are comprised of special characters, like {{sym-==}}, user-defined symbol identifier must adhere to <a href="symbol-identifiers">specific rules</a>. </p> <p>All symbols are stored in a single <a href="#registry">registry</a>, implemented as a simple dictionary. Therefore, all symbols in hex are global, and not lexically scoped. The main driver for this is to keep the language as simple as possible.</p> <p>You can store your own symbols and free them using the <a href="#memory-management-symbols">memory management symbols</a> provided natively. However, native symbols <em>cannot</em> be freed.</p> <h3 id="stack">Stack<a href="#top"></a></h3> <p>The stack is a fundamental data structure in hex that holds values and controls the flow of execution. hex is a stack-based language, meaning that all operations are performed on a stack of values. The order according to which items are added (pushed) to or removed (popped) from the stack is <abbr title="Last In, First Out">LIFO</abbr>.</p> <p>In the canonical implementation, the hex stack can contain up to 256 items. If you try to push more items on the stack, a stack overflow error will be raised and the program will terminate. While this may seem a relatively low number, it is important to note that typically there will not be more than 5-10 items on the stack at any time, because typically symbols are used to frequently pop them out of the stacks.</p> <h4 id="pushing-literals">Pushing Literals<a href="#top"></a></h4> <p>Literals are values that are directly pushed onto the stack. In hex, literals can be integers, strings, or quotations. When a literal is encountered in a hex program, it is pushed onto the stack for further processing. </p> <p>Examples:</p> <ul> <li><code>$0x1$$</code> — Pushes the integer 1 onto the stack.</li> <li><code>$"Hello, World!"$$</code> — Pushes the string <code>Hello, World!</code> onto the stack.</li> <li><code>($0x1$$ $0x2$$ $0x3$$)</code> — Pushes the quotation <code>($0x1$$ $0x2$$ $0x3$$)</code> onto the stack. </li> </ul> <h4 id="pushing-symbols">Pushing Symbols<a href="#top"></a></h4> <p>Symbols in hex are used to represent native or user-defined functions and values. When a symbol is encountered in a hex program, it is looked up in the registry, and its associated value or function is pushed onto the stack. </p> <p>Native symbols can perform manipulations on the stack; they can pop values from the stack and push values back in.</p> <p>In the canonical implementation, native symbols are implemented as native C functions that are executed whenever the corresponding native symbol is pushed on the stack.</p> <p>By contrast, you can only store hex literals as user-defined symbols. When storing a quotation as a symbol, it can be used as data (a list of values) or a portion of an hex program which that can then be <em>dequoted</em> through symbols like {{sym-.}}, which pushes all the items in a quotations on the stack, one by one.</p> <p>Consider the following example hex program:</p> <pre><code> ($:dup$$ $:*$$ $:*$$) $"square"$$ $::$$ $0x3$$ $:square$$ $:.$$ $:puts$$ $; prints 9$$</code></pre> <p>This program defines a symbol $:square$$ that can be used to calculate the square value of an integer, using the symbol {{sym-:}}. From then on, if $:square$$ is found anywhere in the same hex program, it will be substituted with <code>($:*$$ $:*$$)</code>. However, this is not enough to calculate the square value, because the logic to do so is in a quotation. To "execute" (dequote) a quotation, you must use the {{sym-.}} symbol, which pushes all the items in the quotation on the stack, which is equivalent to the following program:</p> <pre><code> $0x3$$ $:dup$$ $:*$$ $:*$$ $:puts$$ $; prints 9$$</code></pre> <p>While the {{sym-:}} symbol can be used to store quotations that can then be dequoted later using {{sym-.}}, typically you want to define operators which are <em>immediately dequoted</em> when pushed on the stack, thus behaving in a similar way as their native counterparts.</p> <p>You can achieve this using the {{sym-::}} symbol, and the previous example can be rewritten as follows:</p> <pre><code> ($:dup$$ $:*$$ $:*$$) $"square"$$ $:::$$ $0x3$$ $:square$$ $:puts$$ $; prints 9$$</code></pre> <p>In this case, you no longer need to explicitly dequote $:square$$ using $:.$$, because it has been stored as an <em>operator</em> and hex knows it has to be immediately dequoted when pushed on the stack.</p> <h3 id="registry">Registry<a href="#top"></a></h3> <p>The registry in hex is a simple dictionary that stores symbols and their associated values or functions. The registry is used to look up symbols when they are encountered in a hex program and to store user-defined symbols and their values.</p> <p>When a symbol is pushed onto the stack, hex looks up the symbol in the registry and pushes its associated value or function onto the stack. If the symbol is not found in the registry, an error is raised.</p> <p>The registry is implemented as a simple key-value store, where the keys are symbol identifiers and the values are the associated values or functions. The registry is global and shared across the entire hex program.</p> <p>hex provides a set of <a href="#native-symbols">native symbols</a> that are pre-defined in the registry and cannot be deleted or modified. These symbols provide basic functionality for arithmetic operations, control flow, I/O operations, file manipulation, and stack manipulation.</p> <p>hex also allows users to define their own symbols and store values in the registry. User-defined symbols can be created, modified, and deleted using the <a href="#memory-management-symbols">memory management symbols</a> provided natively.</p> <p>It is important to note that the registry is a global store, meaning that symbols are not lexically scoped and can be accessed from anywhere in the program. This design choice was made to keep the language simple and straightforward.</p> <p>In the canonical hex implementation, the registry can hold up to 4096 symbols (4032 of which can be user-defined symbols).</p> <h3 id="hbx">Hex Bytecode eXecutable (HBX) Format<a href="#top"></a></h3> <p>hex programs can be compiled to a binary format called Hex Bytecode eXecutable (HBX). HBX is a compact binary representation of hex programs that can be executed by the hex interpreter. HBX files are typically smaller and faster to load than hex source files, making them ideal for distribution and execution.</p> <p>HBX files are structured as follows:</p> <ul> <li>Bytecode Header (8 bytes)</li> <li>Bytecode Symbol Table — containing the list of all symbols that have been defined by the user in the compiled program.</li> <li>Bytecode Program — containing the compiled hex program as a sequence of opcodes and payload.</li> </ul> <h4 id="bytecode-header">Bytecode Header<a href="#top"></a></h4> <p>The header of an HBX file consists of 8 bytes:</p> <ul> <li><code>01</code> — Header Start</li> <li><code>68</code> — The letter 'h'</li> <li><code>65</code> — The letter 'e'</li> <li><code>78</code> — The letter 'x'</li> <li><code>01</code> — Version</li> <li><code>00</code> — First byte indicating the size of the symbol table (little-endian)</li> <li><code>00</code> — Second byte indicating the size of the symbol table (little-endian)</li> <li><code>02</code> — Header End</li> </ul> <h4 id="bytecode-symbol-table">Bytecode Symbol Table<a href="#top"></a></h4> <p>The symbol table in an HBX file contains the list of all symbols that have been defined by the user in the compiled program. Symbols are stored sequentially using the following format:</p> <ul> <li>Symbol Length (1 byte) — The length of the symbol identifier (Can be up to 255 characters long).</li> <li>Symbol Identifier (variable length) — The symbol identifier as a sequence of ASCII characters (not null-terminated).</li> </ul> <p>The symbol table can theoretically contain up to 65536 entries (the maximum size representable in two bytes); however, the maximum number of user-defined symbols is currently limited to 4032, since the <a href="#registry">registry</a> has a maximum size of 4096 items and 64 are reserved for native symbols. </p> <h4 id="bytecode">Bytecode Program<a href="#top"></a></h4> <p>The bytecode program in an HBX file contains the compiled hex program as a sequence of opcodes and payload. Each opcode is represented by a single byte, and some opcodes may have an associated payload.</p> <p>The following opcodes are defined for pushing different types of values on the stack</p> <ul> <li><code>00</code> — (LOOKUP) Lookup user symbol</li> <li><code>01</code> — (PUSHIN) Push Integer</li> <li><code>02</code> — (PUSHST) Push String</li> <li><code>03</code> — (PUSHQT) Push Quotation</li> </ul> <p>Other opcodes are assigned to each <a href="#native-symbols">native symbol</a>, and range from <code>10</code> to <code>4f</code>. </p> <p>Each of the four opcodes for pushing data has an associated payload, which is used to provide additional information to the opcode. The payload is represented as a sequence of bytes following the opcode byte.</p> <p>Opcodes for native symbols, instead, do not have any associated payload.</p> <h5 id="lookup">00 - LOOKUP<a href="#top"></a></h5> <p>The <code>00</code> (LOOKUP) opcode is used to look up a user-defined symbol in the symbol table and push its associated value onto the stack. The <code>00</code> opcode is followed by two bytes representing the index of the symbol in the symbol table, in little-endian format.</p> <p>For example, the sequence <code>00 03 00</code> instructs the interpreter to perform a lookup in the symbol table and retrieve the 4th symbol (index 3).</p> <h5 id="pushint">01 - PUSHIN<a href="#top"></a></h5> <p>The <code>01</code> (PUSHIN) opcode is used to push an integer value onto the stack. The <code>01</code> opcode is followed by:</p> <ul> <li>One byte representing the number of following bytes used to represent the integer (1 to 4).</li> <li>Four bytes representing the signed integer value using two's complement, in little-endian format.</li> </ul> <p>For example, the sequence <code>01 04 fe ff ff ff</code> represents the integer <code>-2</code> ($0xfffffe$$), and the sequence <code>01 01 10</code> represents the integer 16 ($0x10$).</p> <h5 id="pushstr">02 - PUSHST<a href="#top"></a></h5> <p>The <code>02</code> (PUSHST) opcode is used to push a string value onto the stack. The <code>02</code> opcode is followed by:</p> <ul> <li>A variable number of bytes representing the length of the string, encoded using the <a href="https://en.wikipedia.org/wiki/LEB128">Little Endian Base 128 (LEB128)</a> algorithm. </li> <li>Variable-length sequence of bytes representing the ASCII characters of the string, <em>without</em> the null terminator. Note that only ASCII characters are supported by the HBX format right now; attempting to encode non-ASCII characters will result in a compiler error.</li> </ul> <p>The following sequence:</p> <p> <code>02 16 54 68 69 73 20 69 73 20 61 20 74 65 73 74 20 73 74 72 69 6e 67 21</code> </p> <p>represents the string $"This is a test string!"$$</p> <h5 id="pushqt">03 - PUSHQT<a href="#top"></a></h5> <p>The <code>03</code> (PUSHQT) opcode is used to push a quotation value onto the stack. The <code>03</code> opcode is followed by:</p> <ul> <li>A variable number of bytes representing the number of items in the quotation, encoded using the <a href="https://en.wikipedia.org/wiki/LEB128">Little Endian Base 128 (LEB128)</a> algorithm. </li> <li>The opcode sequences for each item of the quotation.</li> </ul> <p>The following sequence:</p> <p> <code>03 05 02 04 74 65 73 74 01 01 01 38 3d 45</code> </p> <p>represents the quotation <code>($"test"$$ $0x1$$ $:dec$$ $:cat$$ $:puts$$)</code></p> <h4 id="bytecode-example">Full Bytecode Example<a href="#top"></a></h4> <p>Consider the following hex program:</p> <pre><code>( $"_n"$$ $:$$ ($:_n$$ $0x0$$ $:<=$$) ($0x1$$) ($:_n$$ $:dup$$ $0x1$$ $:-$$ $:factorial$$ $:*$$) $:if$$ $"_n"$$ $:#$$ ) $"factorial"$$ $:::$$ $0x5$$ $:factorial$$ $:dec$$ $:puts$$</code></pre> <p>This gets compiled to the following bytecode:</p> <pre><code>01 68 65 78 01 02 00 02 02 5f 6e 09 66 61 63 74 6f 72 69 61 6c 03 08 02 02 5f 6e 10 03 03 00 00 00 01 01 00 31 03 01 01 01 01 03 06 00 00 00 1a 01 01 01 22 00 01 00 23 14 02 02 5f 6e 12 02 09 66 61 63 74 6f 72 69 61 6c 11 01 01 05 00 01 00 38 45</code></pre> <p>And here is an annotated breakdown:</p> <pre><code>$; Header with symbol table of size 2$$ 01 68 65 78 01 02 00 02 $; Symbol Table: _n, factorial$$ 02 5f 6e 09 66 61 63 74 6f 72 69 61 6c $; Push quotation of eight items$$ 03 08 $; Push string "_n"$$ 02 02 5f 6e 10 $; Symbol :$$ $; Push quotation of three items$$ 03 03 $; Lookup first symbol (_n)$$ 00 00 00 $; Push integer 0x0$$ 01 01 00 31 $; Symbol <=$$ $; Push quotation of one item$$ 03 01 $; Push integer 0x1$$ 01 01 01 $; Push quotation of six items$$ 03 06 $; Lookup first symbol (_n)$$ 00 00 00 1a $; Symbol dup$$ $; Push integer 0x1$$ 01 01 01 22 $; symbol -$$ $; Lookup second symbol (factorial)$$ 00 01 00 23 $; Symbol *$$ 14 $; Symbol if$$ 02 02 5f 6e 12 $; Symbol ::$$ $; Push string "factorial"$$ 02 09 66 61 63 74 6f 72 69 61 6c 11 $; Symbol #$$ $; Push integer 5$$ 01 01 05 $; Lookup second symbol (factorial)$$ 00 01 00 38 $; Symbol dec$$ 45 $; Symbol puts$$</code></pre> <h3 id="native-symbols">Native Symbol Reference<a href="#top"></a></h3> <p>hex provides a set of 64 ($0x40$$) native symbols that are built-in and pre-defined in the registry. The following section provides details on each of these symbols, including a signature illustrating how each symbol manipulates the stack.</p> <p>The notation used to specify the signature of a symbol is as follows:</p> <pre><code> <mark>in1 in2 ... inN → out1 out2 ... outM</mark></code></pre> <p>Where <code>in1</code>, <code>in2</code>, ..., <code>inN</code> are the items consumed from the stack, and <code>out1</code>, <code>out2</code>, ..., <code>outM</code> are the items pushed back onto the stack.</p> <p> Note that the <code>→</code> character represents the symbol being described, and: </p> <ul> <li><code>inN</code> is the first element on the stack <em>before</em> the symbol is pushed on the stack. </li> <li><code>outM</code> is the first element on the stack <em>after</em> the symbol is pushed on the stack. </li> </ul> <p>The following abbreviations are used to represent different types of literals (and each can have a numerical suffix for differentiation within the signature):</p> <ul> <li><code>a</code> — Any literal value</li> <li><code>s</code> — String</li> <li><code>q</code> — Quotation</li> <li><code>i</code> — Integer</li> </ul> <p>Additionally, <code>*</code> is used to represent zero or more literals of any type.</p> <p>Consider, for example, the following signature for the {{sym-swap}} symbol:</p> <p><mark> a1 a2 → a2 a1</mark></p> <p>This signature indicates that the symbol {{sym-swap}} pops two items from the stack (<code>a1</code> and <code>a2</code>), and then pushes them back onto the stack in reverse order (<code>a2</code> and <code>a1</code>). </p> <h4 id="memory-management-symbols">Memory Management Symbols<a href="#top"></a></h4> <h5 id="store-symbol"><code>$::$$</code> Symbol<a href="#top"></a></h5> <p><mark>a s →</mark></p> <aside>OPCODE: <code>10</code></aside> <p>Stores the literal <code>a</code> in the registry as the symbol <code>s</code>.</p> <h5 id="operator-symbol"><code>$:::$$</code> Symbol<a href="#top"></a></h5> <p><mark>a s →</mark></p> <aside>OPCODE: <code>11</code></aside> <p>Stores the literal <code>a</code> in the registry as the symbol <code>s</code>. If %:a%% is a quotation, it will be immediately dequoted when pushed on the stack.</p> <h5 id="free-symbol"><code>$:#$$</code> Symbol<a href="#top"></a></h5> <p><mark>s →</mark></p> <aside>OPCODE: <code>12</code></aside> <p>Frees the symbol <code>s</code> from the registry.</p> <h5 id="symbols-symbol"><code>$:symbols$$</code> Symbol<a href="#top"></a></h5> <p><mark>→ q</mark></p> <aside>OPCODE: <code>13</code></aside> <p>Pushes a quotation on the stack containing the identifiers of a the symbols currently stored in the registry.</p> <h4 id="control-flow-symbols">Control Flow Symbols<a href="#top"></a></h4> <h5 id="if-symbol"><code>$:if$$</code> Symbol<a href="#top"></a></h5> <p><mark>q1 q2 q3 → *</mark></p> <aside>OPCODE: <code>14</code></aside> <p>Dequotes quotation <code>q1</code>, if it pushes a positive integer on the stack it dequotes <code>q2</code>, otherwise dequotes <code>q3</code>. </p> <h5 id="while-symbol"><code>$:while$$</code> Symbol<a href="#top"></a></h5> <p><mark>q1 q2 → *</mark></p> <aside>OPCODE: <code>15</code></aside> <p>Dequotes quotation <code>q1</code>, if it pushes a positive integer on the stack it dequotes <code>q2</code> and repeats the process. </p> <h5 id="error-symbol"><code>$:error$$</code> Symbol<a href="#top"></a></h5> <p><mark>→ s</mark></p> <aside>OPCODE: <code>16</code></aside> <p>Pushes the last error message to the stack.</p> <h5 id="try-symbol"><code>$:try$$</code> Symbol<a href="#top"></a></h5> <p><mark>q1 q2 → *</mark></p> <aside>OPCODE: <code>17</code></aside> <p>Dequotes quotation <code>q1</code>, if it throws an error it dequotes <code>q2</code>.</p> <h5 id="throw-symbol"><code>$:throw$$</code> Symbol<a href="#top"></a></h5> <p><mark>s →</mark></p> <aside>OPCODE: <code>18</code></aside> <p>Throws an error printing error message %:s%%.</p> <h4 id="stack-management-symbols">Stack Management Symbol<a href="#top"></a></h4> <h5 id="dup-symbol"><code>$:dup$$</code> Symbol<a href="#top"></a></h5> <p><mark> a → a a</mark></p> <aside>OPCODE: <code>19</code></aside> <p>Duplicates literal <code>a</code> and pushes it on the stack.</p> <h5 id="stack-symbol"><code>$:stack$$</code> Symbol<a href="#top"></a></h5> <p><mark> → q</mark></p> <aside>OPCODE: <code>1a</code></aside> <p>Pushes the items currently on the stack as a quotation on the stack.</p> <h5 id="pop-symbol"><code>$:pop$$</code> Symbol<a href="#top"></a></h5> <p><mark> a →</mark></p> <aside>OPCODE: <code>1b</code></aside> <p>Removes the top item from the stack.</p> <h5 id="swap-symbol"><code>$:swap$$</code> Symbol<a href="#top"></a></h5> <p><mark> a1 a2 → a2 a1</mark></p> <aside>OPCODE: <code>1c</code></aside> <p>Swaps the top two items on the stack.</p> <h4 id="evaluation-symbols">Evaluation Symbols<a href="#top"></a></h4> <h5 id="i-symbol"><code>$:.$$</code> Symbol<a href="#top"></a></h5> <p><mark>q → *</mark></p> <aside>OPCODE: <code>1d</code></aside> <p>Dequotes quotation <code>q</code>.</p> <h5 id="eval-symbol"><code>$:!$$</code> Symbol<a href="#top"></a></h5> <p><mark>(s|q) → *</mark></p> <aside>OPCODE: <code>1e</code></aside> <p>Evaluates the string <code>s</code> as an hex program, or the array of integers to be interpreted as hex bytecode (HBX format).</p> <h5 id="quote-symbol"><code>$:'$$</code> Symbol<a href="#top"></a></h5> <p><mark>a → q</mark></p> <aside>OPCODE: <code>1f</code></aside> <p>Pushes the literal <code>a</code> wrapped in a quotation on the stack.</p> <h5 id="debug-symbol"><code>$:'$$</code> Symbol<a href="#top"></a></h5> <p><mark>q → *</mark></p> <aside>OPCODE: <code>20</code></aside> <p>Dequotes <code>q</code> with debugging enabled.</p> <h4 id="arithmetic-symbols">Arithmetic Symbols<a href="#top"></a></h4> <h5 id="add-symbol"><code>$:+$$</code> Symbol<a href="#top"></a></h5> <p><mark> i1 i2 → i</mark></p> <aside>OPCODE: <code>21</code></aside> <p>Pushes the result of the sum of <code>i1</code> and <code>i2</code> on the stack.</p> <h5 id="subtract-symbol"><code>$:-$$</code> Symbol<a href="#top"></a></h5> <p><mark> i1 12 → i</mark></p> <aside>OPCODE: <code>22</code></aside> <p>Pushes the result of the subtraction of <code>12</code> from <code>i1</code> on the stack.</p> <h5 id="multiply-symbol"><code>$:*$$</code> Symbol<a href="#top"></a></h5> <p><mark> i1 12 → i</mark></p> <aside>OPCODE: <code>23</code></aside> <p>Pushes the result of the multiplication of <code>i1</code> and <code>12</code> on the stack.</p> <h5 id="divide-symbol"><code>$:/$$</code> Symbol<a href="#top"></a></h5> <p><mark> i1 12 → i</mark></p> <aside>OPCODE: <code>24</code></aside> <p>Pushes the result of the division of <code>i1</code> by <code>12</code> on the stack.</p> <h5 id="modulo-symbol"><code>$:%$$</code> Symbol<a href="#top"></a></h5> <p><mark> i1 12 → i</mark></p> <aside>OPCODE: <code>25</code></aside> <p>Pushes the result of the modulo of <code>i1</code> by <code>12</code> on the stack.</p> <h4 id="bitwise-operations-symbols">Bitwise Operations Symbols<a href="#top"></a></h4> <h5 id="bitwise-and-symbol"><code>$:&$$</code> Symbol<a href="#top"></a></h5> <p><mark> i1 12 → i</mark></p> <aside>OPCODE: <code>26</code></aside> <p>Pushes the result of a bitwise and of <code>i1</code> and <code>i2</code> on the stack.</p> <h5 id="bitwise-or-symbol"><code>$:|$$</code> Symbol<a href="#top"></a></h5> <p><mark> i1 12 → i</mark></p> <aside>OPCODE: <code>27</code></aside> <p>Pushes the result of a bitwise or of <code>i1</code> and <code>i2</code> on the stack.</p> <h5 id="bitwise-xor-symbol"><code>$:^$$</code> Symbol<a href="#top"></a></h5> <p><mark> i1 12 → i</mark></p> <aside>OPCODE: <code>28</code></aside> <p>Pushes the result of a bitwise xor of <code>i1</code> and <code>i2</code> on the stack.</p> <h5 id="bitwise-not-symbol"><code>$:~$$</code> Symbol<a href="#top"></a></h5> <p><mark> i → i</mark></p> <aside>OPCODE: <code>29</code></aside> <p>Pushes the result of a bitwise not of <code>i</code> on the stack.</p> <h5 id="bitwise-leftshift-symbol"><code>$:<<$$</code> Symbol<a href="#top"></a></h5> <p><mark> i1 12 → i</mark></p> <aside>OPCODE: <code>2a</code></aside> <p>Pushes the result of shifting <code>i1</code> by <code>i2</code> bits to the left.</p> <h5 id="bitwise-rightshift-symbol"><code>$:>>$$</code> Symbol<a href="#top"></a></h5> <p><mark> i1 12 → i</mark></p> <aside>OPCODE: <code>2b</code></aside> <p>Pushes the result of shifting <code>i1</code> by <code>i2</code> bits to the right.</p> <h4 id="comparisons-symbols">Comparisons Symbols<a href="#top"></a></h4> <h5 id="equal-symbol"><code>$:==$$</code> Symbol<a href="#top"></a></h5> <p><mark> a1 a2 → i</mark></p> <aside>OPCODE: <code>2c</code></aside> <p>Pushes <code>0x1</code> on the stack if <code>a1</code> and <code>a2</code> are equal, or <code>0x0</code> otherwise. </p> <h5 id="notequal-symbol"><code>$:!=$$</code> Symbol<a href="#top"></a></h5> <p><mark> i1 12 → i</mark></p> <aside>OPCODE: <code>2d</code></aside> <p>Pushes <code>0x1</code> on the stack if <code>a1</code> and <code>a2</code> are not equal, or <code>0x0</code> otherwise. </p> <h5 id="greaterthan-symbol"><code>$:>$$</code> Symbol<a href="#top"></a></h5> <p><mark> i1 12 → i</mark></p> <aside>OPCODE: <code>2e</code></aside> <p>Pushes <code>0x1</code> on the stack if <code>i1</code> is greater than <code>i2</code>, or <code>0x0</code> otherwise. </p> <h5 id="lessthan-symbol"><code>$:<$$</code> Symbol<a href="#top"></a></h5> <p><mark> i1 12 → i</mark></p> <aside>OPCODE: <code>2f</code></aside> <p>Pushes <code>0x1</code> on the stack if <code>i1</code> is less than <code>i2</code>, or <code>0x0</code> otherwise.</p> <h5 id="greaterthanequal-symbol"><code>$:>=$$</code> Symbol<a href="#top"></a></h5> <p><mark> i1 12 → i</mark></p> <aside>OPCODE: <code>30</code></aside> <p>Pushes <code>0x1</code> on the stack if <code>i1</code> is greater than or equal to <code>i2</code>, or <code>0x0</code> otherwise. </p> <h5 id="lessthanequal-symbol"><code>$:<=$$</code> Symbol<a href="#top"></a></h5> <p><mark> i1 i2 → i</mark></p> <aside>OPCODE: <code>31</code></aside> <p>Pushes <code>0x1</code> on the stack if <code>i1</code> is less than or equal to <code>i2</code>, or <code>0x0</code> otherwise. </p> <h4 id="boolean-logic-symbols">Boolean Logic Symbols<a href="#top"></a></h4> <h5 id="and-symbol"><code>$:and$$</code> Symbol<a href="#top"></a></h5> <p><mark> i1 i2 → i</mark></p> <aside>OPCODE: <code>32</code></aside> <p>Pushes <code>0x1</code> on the stack if <code>i1</code> and <code>i2</code> are non-zero integers, or <code>0x0</code> otherwise. </p> <h5 id="or-symbol"><code>$:or$$</code> Symbol<a href="#top"></a></h5> <p><mark> i1 i2 → i</mark></p> <aside>OPCODE: <code>33</code></aside> <p>Pushes <code>0x1</code> on the stack if <code>i1</code> or <code>i2</code> are non-zero integers, or <code>0x0</code> otherwise. </p> <h5 id="not-symbol"><code>$:not$$</code> Symbol<a href="#top"></a></h5> <p><mark> i → i</mark></p> <aside>OPCODE: <code>34</code></aside> <p>Pushes <code>0x1</code> on the stack if <code>i</code> is zero, or <code>0x0</code> otherwise.</p> <h5 id="xor-symbol"><code>$:xor$$</code> Symbol<a href="#top"></a></h5> <p><mark> i1 i2 → i</mark></p> <aside>OPCODE: <code>35</code></aside> <p>Pushes <code>0x1</code> on the stack if <code>i1</code> and <code>i2</code> are different, or <code>0x0</code> otherwise. </p> <h4 id="type-checking-and-conversion-symbols">Type Checking and Conversion Symbols<a href="#top"></a></h4> <h5 id="int-symbol"><code>$:int$$</code> Symbol<a href="#top"></a></h5> <p><mark>s → i</mark></p> <aside>OPCODE: <code>36</code></aside> <p>Converts the string <code>s</code> representing a hexadecimal integer to an integer value and pushes it on the stack.</p> <h5 id="str-symbol"><code>$:str$$</code> Symbol<a href="#top"></a></h5> <p><mark> i → s</mark></p> <aside>OPCODE: <code>37</code></aside> <p>Converts the integer <code>i</code> to a string representing a hexadecimal integer and pushes it on the stack. </p> <h5 id="dec-symbol"><code>$:dec$$</code> Symbol<a href="#top"></a></h5> <p><mark> i → s</mark></p> <aside>OPCODE: <code>38</code></aside> <p>Converts the integer <code>i</code> to a string representing a decimal integer and pushes it on the stack. </p> <h5 id="hex-symbol"><code>$:hex$$</code> Symbol<a href="#top"></a></h5> <p><mark> s → i</mark></p> <aside>OPCODE: <code>39</code></aside> <p>Converts the string <code>s</code> representing a decimal integer to an integer value and pushes it on the stack. </p> <h5 id="ord-symbol"><code>$:ord$$</code> Symbol<a href="#top"></a></h5> <p><mark> s → i</mark></p> <aside>OPCODE: <code>3a</code></aside> <p>Pushes the ASCII value of the string <code>s</code> on the stack.</p> <p>If <code>s</code> is longer than 1 character or if it is not representable using an ASCII code between $0x0$$ and $0x7f$$, <code>$0xffffffff$$</code> is pushed on the stack.</p> <h5 id="chr-symbol"><code>$:chr$$</code> Symbol<a href="#top"></a></h5> <p><mark> i → s</mark></p> <aside>OPCODE: <code>3b</code></aside> <p>Pushes the ASCII character represented by the integer <code>i</code> on the stack.</p> <p>If <code>i</code> is not between $0x0$$ and $0x7f$$, an empty string is pushed on the stack.</p> <h5 id="type-symbol"><code>$:type$$</code> Symbol<a href="#top"></a></h5> <p><mark> a → s</mark></p> <aside>OPCODE: <code>3c</code></aside> <p>Pushes the type of the literal <code>a</code> on the stack (<code>integer</code>, <code>string</code>, <code>quotation</code>, <code>native-symbol</code>, <code>user-symbol</code>, <code>invalid</code>, or <code>unknown</code>). </p> <h4 id="list-symbols">List (Strings and Quotations) Symbols<a href="#top"></a></h4> <h5 id="cat-symbol"><code>$:cat$$</code> Symbol<a href="#top"></a></h5> <p><mark> (s1 s2|q1 q2) → (s|q)</mark></p> <aside>OPCODE: <code>3d</code></aside> <p>Pushes the result of the concatenation of two strings or two quotations on the stack.</p> <h5 id="len-symbol"><code>$:len$$</code> Symbol<a href="#top"></a></h5> <p><mark> (s|q) → i</mark></p> <aside>OPCODE: <code>3e</code></aside> <p>Pushes the length of a string or a quotation on the stack.</p> <h5 id="get-symbol"><code>$:get$$</code> Symbol<a href="#top"></a></h5> <p><mark> (s|q) i → a</mark></p> <aside>OPCODE: <code>3f</code></aside> <p>Pushes the <code>i</code>th item of a string or a quotation on the stack.</p> <h5 id="index-symbol"><code>$:index$$</code> Symbol<a href="#top"></a></h5> <p><mark> (s a|q a) → i</mark></p> <aside>OPCODE: <code>40</code></aside> <p>Pushes the index of the first occurrence of the literal <code>a</code> in a string or a quotation on the stack. If <code>a</code> is not found, <code>$0xffffffff$$</code> is pushed on the stack.</p> <h5 id="join-symbol"><code>$:join$$</code> Symbol<a href="#top"></a></h5> <p><mark> q s1 → s2</mark></p> <aside>OPCODE: <code>41</code></aside> <p>Assuming that <code>q</code> is a quotation containing only strings, pushes the string <code>s2</code> obtained by joining each element of <code>q</code> together using <code>s1</code> as a delimiter. </p> <h5 id="split-symbol"><code>$:split$$</code> Symbol<a href="#top"></a></h5> <p><mark> s1 s2 → q</mark></p> <aside>OPCODE: <code>42</code></aside> <p>Pushes a quotation <code>q</code> containing the strings obtained by splitting <code>s1</code> using <code>s2</code> as a delimiter. </p> <h5 id="replace-symbol"><code>$:replace$$</code> Symbol<a href="#top"></a></h5> <p><mark> s1 s2 s3 → s4</mark></p> <aside>OPCODE: <code>43</code></aside> <p>Pushes the string <code>s4</code> obtained by replacing the first occurrence of <code>s2</code> in <code>s1</code> by <code>s3</code>. </p> <h5 id="map-symbol"><code>$:map$$</code> Symbol<a href="#top"></a></h5> <p><mark> q1 q2 → q3</mark></p> <aside>OPCODE: <code>44</code></aside> <p>Dequotes quotation <code>q1</code> and applies it to each item of quotation <code>q2</code> to obtain a new quotation <code>q3</code>. <h4 id="input-output-symbols">Input/Output Symbols<a href="#top"></a></h4> <h5 id="puts-symbol"><code>$:puts$$</code> Symbol<a href="#top"></a></h5> <p><mark> a →</mark></p> <aside>OPCODE: <code>45</code></aside> <p>Prints <code>a</code> to standard output, followed by a new line.</p> <h5 id="warn-symbol"><code>$:warn$$</code> Symbol<a href="#top"></a></h5> <p><mark> a →</mark></p> <aside>OPCODE: <code>46</code></aside> <p>Prints <code>a</code> to standard error, followed by a new line.</p> <h5 id="print-symbol"><code>$:print$$</code> Symbol<a href="#top"></a></h5> <p><mark> a →</mark></p> <aside>OPCODE: <code>47</code></aside> <p>Prints <code>a</code> to standard output.</p> <h5 id="gets-symbol"><code>$:gets$$</code> Symbol<a href="#top"></a></h5> <p><mark> → s</mark></p> <aside>OPCODE: <code>48</code></aside> <p>Reads a line from standard input and pushes it on the stack as a string.</p> <h4 id="file-symbols">File Symbols<a href="#top"></a></h4> <h5 id="read-symbol"><code>$:read$$</code> Symbol<a href="#top"></a></h5> <p><mark>s1 → (s2|q)</mark></p> <aside>OPCODE: <code>49</code></aside> <p>Reads the content of the file <code>s1</code> and pushes it on the stack as a string, if the file is in textual format, or as a quotation of integers representing bytes, if the file is in binary format.</p> <h5 id="write-symbol"><code>$:write$$</code> Symbol<a href="#top"></a></h5> <p><mark>(s1|q) s2 →</mark></p> <aside>OPCODE: <code>4a</code></aside> <p>Writes the string <code>s1</code> or the array of integers representing bytes <code>q</code> to the file <code>s2</code>. <h5 id="append-symbol"><code>$:append$$</code> Symbol<a href="#top"></a></h5> <p><mark>(s1|q) s2 →</mark></p> <aside>OPCODE: <code>4b</code></aside> <p>Appends the string <code>s1</code> or the array of integers representing bytes <code>q</code> to the file <code>s2</code>. </p> <h4 id="shell-symbols">Shell Symbols<a href="#top"></a></h4> <h5 id="args-symbol"><code>$:args$$</code> Symbol<a href="#top"></a></h5> <p><mark> → q</mark></p> <aside>OPCODE: <code>4c</code></aside> <p>Pushes the command line arguments as a quotation on the stack.</p> <h5 id="exit-symbol"><code>$:exit$$</code> Symbol<a href="#top"></a></h5> <p><mark> i →</mark></p> <aside>OPCODE: <code>4d</code></aside> <p>Exits the program with the exit code <code>i</code>.</p> <h5 id="exec-symbol"><code>$:exec$$</code> Symbol<a href="#top"></a></h5> <p><mark> s → i</mark></p> <aside>OPCODE: <code>4e</code></aside> <p>Executes the string <code>s</code> as a shell command, and pushes the command return code on the stack. </p> <h5 id="run-symbol"><code>$:run$$</code> Symbol<a href="#top"></a></h5> <p><mark> s → q</mark></p> <aside>OPCODE: <code>4f</code></aside> <p>Executes the string <code>s</code> as a shell command, capturing its output and errors. It pushes a quotation on the stack containing the following items: </p> <ul> <li>the exit code of the command as an integer</li> <li>the standard output of the command as a string</li> <li>the standard error of the command as a string</li> </ul> </article> |